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Abstract 

This deliverable describes the privacy risks for the federated training of a predictive model in RE-SAMPLE 

and presents a privacy-preserving solution to this problem. The solution utilises homomorphic encryption 

to conceal a subset of the model’s parameters, while allowing the training procedure to proceed obliviously 

from potential adversaries. The proposed approach leads to a trade-off between the efficiency of the training 

process, in terms of local computations and communication overhead, and the privacy of the training data, 

experimentally measured against privacy attacks. The proposed approach is implemented as a prototype 

and assessed on public datasets against state-of-the-art privacy attacks. 
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1. Introduction 

Deliverable D3.2 “Privacy-preserving designs of ML” is part of WP3 “Personalised prediction and 

modelling of CCC exacerbations” and is linked with Task 3.1 “Training of a predictive model” and Task 

4.4 “Implementation and experimental evaluation of privacy-preserving machine learning model training 

and prediction”.  

 

Specifically, we analyse the privacy risks associated with the use of federated learning to train a joint 

predictive model on distributed data. Information about the training data of a model can be retrieved by 

having access to its prediction functionality or to the model itself, posing a risk to the privacy of the patients 

involved in the RE-SAMPLE project. We show that Federated Learning (FL) alone is not enough to fully 

prevent adversaries from carrying out such privacy attacks. Adversaries may attempt to corrupt one or more 

pilot sites and try to retrieve information about the other sites’ patients. Defences against this kind of attacks 

exist, but they all suffer from downsides (severe utility loss of the model, poor scalability with the number 

of training parties in terms of communication overhead, or high computational cost that would made the 

training impractical). Here, we propose a new solution which can be flexibly tuned to trade-off privacy for 

efficiency, while keeping the utility of the model unaffected. 

 

The output of this deliverable consists of a detailed description of the proposed solution, and a strategy to 

select its hyperparameters for the aforementioned trade-off. These outputs will be fed as input to D4.5 

“Proof-of-concept privacy-preserving ML and data aggregation” and D4.6 “Report on the final parameter 

selection” within the work package WP4. 

 

The deliverable starts by summarising its objectives in Section 2, and by providing some background 

notions on privacy-preserving machine learning in Section 3. We use Section 4 to provide the reader with 

a basic understanding of the notion of privacy in machine learning, describing different privacy attacks 

(membership inference, model inversion, and property inference), and focusing in particular on the 

federated setting. We show how current solutions for privacy-preserving federated learning can turn out to 

be impractical, focusing on solutions based on encrypting the model in Section 5. These approaches provide 

privacy at the cost of training efficiency. In Section 6, we show how we improve on these solutions for 

achieving better efficiency at the cost of little privacy loss. Further, we outline the compatibility of our 

solution with existing solutions based on differential privacy – as also envisioned in the RE-SAMPLE 

project. 

 

  



   

 

D3.2: Privacy-Preserving Design of ML              Page 9 of 42 

2. Objectives 

The objective of this deliverable is to present the privacy-preserving design for the machine learning (ML) 

components of the RE-SAMPLE project. It serves as the first part of a series of three deliverables, outlined 

as follows: 

- D3.2 Privacy-preserving design of ML (this deliverable): Provides an understanding of privacy-

preserving machine learning, privacy concepts, existing risks, related work, and available 

mitigations. Describes the proposed solution for private training and inference of ML models in 

RE-SAMPLE, including high-level descriptions of algorithms and protocols, privacy evaluation, 

security proof, and benchmarking of prototypes on publicly available datasets. Aims to highlight 

the threats, the need for the proposed solution, and the advantages and disadvantages in terms of 

privacy and utility. 

- D4.5: Proof-of-concept privacy-preserving ML and data aggregation: Describes the 

implementation of the solution within the RE-SAMPLE framework, detailing the Application 

Programming Interface (API) calls and the interactions among the hospitals and the coordinating 

server. 

- D4.6: Report on the final parameter selection: Focuses on the finalization and optimization of 

hyperparameters of the solution within the RE-SAMPLE framework, by finding a suitable trade-

off between privacy and efficiency. 
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3. Background 

In this section we provide some basic notions and definitions. 

 

3.1 Differential Privacy 

Differential Privacy (DP) [1] is a rigorous privacy concept that provides strong guarantees for protecting 

individual data when performing statistical analyses. It ensures that the presence or absence of any single 

data point in the dataset does not significantly impact the outcome of the analysis, thus safeguarding the 

privacy of individuals. The idea is that given a dataset 𝐷 and a statistical mechanism 𝑓 you want to compute 

on 𝐷, just enough tailor crafted noise is injected into the dataset or the mechanism to ensure that individual 

privacy is preserved while still allowing meaningful analysis to be conducted. Unlike traditional approaches 

such as k-anonymity, DP provides privacy guarantees regardless of adversaries' prior knowledge. 

 

The epsilon-delta framework is central to DP. It quantifies privacy guarantees using two parameters: 

- epsilon (𝜖), which quantifies the privacy loss incurred by an individual's participation in a dataset, 

and 

- delta (𝛿), which represents the allowable probability of a privacy breach. 

Mathematically, a statistical mechanism 𝑓 is (𝜖, 𝛿)-differentially private if, for all possible pairs of 

neighbouring datasets 𝐷 and 𝐷′ (i.e., datasets that differ by the presence or absence of a single individual's 

data point), and for all possible outcomes 𝑆 of the computation: 

Pr[𝑓(𝐷) ∈ 𝑆] ≤ 𝑒𝜖 Pr[𝑓(𝐷′) ∈ 𝑆] + 𝛿 

In simpler terms, this formula states that the probability of obtaining a certain output remains relatively 

stable regardless of whether a specific individual's data is included or excluded. 

 

Choosing an appropriate 𝜖 value is crucial and challenging in practice. A smaller 𝜖 implies stronger privacy 

guarantees, but it may also lead to significant noise being added to the computation, potentially affecting 

its accuracy. Conversely, a larger 𝜖 allows for more accurate computations but provides weaker privacy 

protection. The challenge lies in finding the right balance between privacy and utility. Empirical evaluations 

and sensitivity analyses are often conducted to iteratively adjust 𝜖 based on the specific requirements and 

constraints of the application. 

 

3.2 Multiparty Computation 

Multiparty Computation (MPC) is a cryptographic technique that enables multiple parties 𝑃1, … , 𝑃𝑁 to 

jointly compute a function 𝑓 over their inputs 𝑥1, … , 𝑥𝑁 while keeping those inputs private. Essentially, 

MPC allows computation on sensitive data without revealing the data itself, ensuring privacy and 

confidentiality in collaborative settings. It relies on cryptographic protocols to distribute the computation 

across multiple parties in such a way that each party cannot learn more than what they can infer from their 

own inputs and the result of the computation. This is achieved through a combination of encryption, secret-

sharing schemes, and secure computation protocols. 

 

The MPC framework proves the security of its protocols depending on the view and capabilities a potential 

adversary is assumed to have. The adversary is usually supposed to be able to corrupt up to 𝑡 parties, for a 

given 𝑡 < 𝑁, and obtain their view on the protocol, i.e., their internal computations and the messages they 

exchange with the other parties. If the adversary is also allowed to tamper with the protocol, that is to force 

the corrupted parties to deviate from the given instructions and send arbitrarily crafted messages, then we 

are modelling a malicious or active adversary. Otherwise, we are modelling a semi-honest or passive 

adversary. 

 

Theoretically, it is possible to create a multiparty protocol to securely compute any given computable 

function 𝑓. However, the challenge is to come up with a protocol that is efficient. MPC protocols turn out 

to be expensive to run, mostly in terms of communication complexity. Their communication overhead does 

not usually scale well with an increasing number of participants (i.e., 𝑁). Especially in the malicious setting, 

where MPC protocols need to incorporate heavy cryptographic techniques such as zero-knowledge proofs 

and commitment schemes to ensure security against active adversaries. 
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3.3 Homomorphic Encryption 

Homomorphic Encryption (HE) is a type of encryption that allows performing computations on encrypted 

data without decrypting it first. It enables different kind of operations to be executed directly on ciphertexts, 

resulting in encrypted results that correspond to the outcomes of the same operations on the plaintext data. 

This property allows for computation on sensitive information without exposing it. More formally, there is 

an evaluation functionality Eval such that given an 𝑛-ary function 𝑓 and messages 𝑚1, … ,𝑚𝑛 

Dec(Eval(𝑓, 𝐸𝑛𝑐(𝑚1) , … , 𝐸𝑛𝑐(𝑚𝑛))) = 𝑓(𝑚1, … ,𝑚𝑛) 
where Enc⁡and Dec⁡are the encryption and decryption functionality for a given key, respectively. 

 

HE can be used to outsource computations to an untrusted third party by providing it with the encryption 

of the input of these computations. The third party will then apply the homomorphic evaluation on the 

encrypted input to obliviously compute the encrypted output, which is then returned to the original querier 

who can decrypt it. In this scenario, the querier is the one setting up the crypto scheme, generating the 

encryption and decryption keys, in addition to an evaluation key, which is needed by the third party to 

perform the homomorphic evaluation. Using these delegation-based computations is quite challenging in 

practice for mainly two reasons. The first one is the high computational cost of performing operations under 

encryption. The second one is that not all functions are (directly) supported for homomorphic evaluation. 

 

HE schemes are classified depending on what kind of functions (usually arithmetic circuits composed of 

additions and multiplications, or Boolean circuits composed of ANDs and XORs) they support for the 

homomorphic evaluation. 

- Partial Homomorphic Encryption schemes allow for circuits of any depth but consisting of only 

one kind of operation (either only additions/XORs or only multiplications/ANDs). 

- Somewhat Homomorphic Encryption schemes support any number of one operation, and a limited 

number of the other operation (this bound is fixed by the scheme). 

- Levelled Homomorphic Encryption schemes support both operations but up to a given number of 

times (this bound can be modified within the scheme, usually at the cost of bigger ciphertexts and 

higher computational overhead). 

- Fully Homomorphic Encryption (FHE) schemes allow for any number of both operations. FHE 

schemes are very useful due to their flexibility, but also very expensive from a computational point 

of view. 

 

FHE schemes are often built upon Levelled schemes, enhanced with a bootstrapping functionality. 

Bootstrapping enables the “refreshing” of ciphertexts once the number of allowed operations on them is 

over. This process involves homomorphically evaluating an approximation of the decryption circuit on the 

ciphertext to be refreshed. Through this mechanism, the ciphertext is decrypted and re-encrypted in an 

oblivious manner, renewing its usability for further computations. 

 

3.4 Multilayer Perceptrons (MLPs) 

Multilayer Perceptrons (MLPs), also known as fully-connected or dense networks, are the simplest kind of 

feedforward neural networks, where each neuron in one layer is connected to every neuron in the next layer. 

Due to their structure, the parameters of these models can be represented by matrices, and in some cases, 

an additive bias parameter is included for added flexibility. Given an MLP with 𝐿 layers and 𝑖 ∈ {1,… , 𝐿}, 
we denote by 𝑤𝑖 and 𝑏𝑖 the weight matrix and bias vector between layer 𝑖 − 1 and layer 𝑖, respectively. We 

denote by 𝑙𝑖 the output of layer 𝑖, that is 𝑙𝑖 = 𝜙𝑖(𝑙𝑖−1𝑤𝑖 + 𝑏𝑖), where 𝑙0 = 𝑥 is the input of the model and 

𝜙𝑖 is the so-called activation function used to incorporate non-linearity in the model. And we denote the 

intermediate linear application output as 𝑢𝑖 = 𝑙𝑖−1𝑤𝑖 + 𝑏𝑖. With a little abuse of notation, we will 

sometimes refer to the weight and bias 𝑤𝑖, 𝑏𝑖 as to the parameters of the layer they allow to transition to, 

namely layer 𝑖. The model is then a parameterized function 𝑓(𝑥;𝑤𝑖, 𝑏𝑖), whose output is 𝑙𝐿. 

 

The model is trained by minimising the empirical risk with respect to a given loss function. For supervised 

learning, we assume to have a training dataset 𝐷 of labeled examples (𝑥, 𝑦), where 𝑥 is the feature vector 

and 𝑦 is the ground-truth label. Given a model 𝑓(𝑥;𝑤𝑖, 𝑏𝑖), the goal is to optimize the model’s parameters 
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by minimising some loss function 𝐿(𝑓(𝑥), 𝑦). This is usually done through Gradient Descent (GD) 

techniques, namely computing the gradient of the loss function and moving towards the negative direction 

of the gradient. To estimate the gradient of 𝐿 with respect to the model parameters 𝑤𝑖, 𝑏𝑖, feedforward and 

backpropagation are used. During feedforward, an input data 𝑥 is propagated layer by layer through the 

network, computing all the 𝑢𝑖 and 𝑙𝑖. The output prediction 𝑙𝐿 is then compared to the actual label 𝑦 using 

the chosen loss function 𝐿 to compute the loss value. The backpropagation algorithm then calculates the 

gradients of the loss function with respect to the model’s parameters. When the loss function 𝐿, the model𝑓, 

and the example (𝑥, 𝑦) are clear from the context, we will write ∇𝑤𝑖 and ∇𝑏𝑖 in place of ∇𝑤𝑖
𝐿(𝑓(𝑥), 𝑦) and 

∇𝑏𝑖𝐿(𝑓(𝑥), 𝑦), respectively. Below is a schematic representation of the computations performed during one 

step of the training process. 

 

 
 

This step is repeated for a batch of examples 𝐵, and the resulting gradients are averaged to get a better 

approximation of the actual loss gradient on the real population. The parameters are then updated following 

the negative direction of the gradient, by a step size proportional to a learning rate 𝜂 > 0: 

 

𝑤𝑖 ← 𝑤𝑖 −
𝜂

|𝐵|
∑ ∇𝑤𝑖

𝐿(𝑓(𝑥), 𝑦)

(𝑥,𝑦)∈𝐵

 

𝑏𝑖 ← 𝑏𝑖 −
𝜂

|𝐵|
∑ ∇𝑏𝑖𝐿(𝑓(𝑥), 𝑦)

(𝑥,𝑦)∈𝐵

. 

 

This iterative process of feeding the data forward, computing the loss, and updating the model’s parameters 

continues until convergence, or for a fixed number of iterations. 
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4. Privacy-Preserving Machine Learning (PPML) 

Privacy-preserving machine learning (PPML) is the branch of ML that aims to develop techniques and 

methodologies to perform model training and inference while safeguarding the privacy of the training data 

and/or of the model itself. Such techniques should mitigate the danger coming from privacy attacks, while 

keeping the utility of the model and the efficiency of the training and inference as high as possible. 

 

4.1 Privacy Attacks 

In general, a privacy attack is a technique designed to extract information about the data that a particular 

model has been trained on. In this section, we provide a high-level description and classification of privacy 

attacks based on the information available to the adversary and its goal. 

4.1.1 Threat Model 

In this section, we briefly discuss the threat model under which PPML works and the kind of adversaries it 

considers [2]. 

 

4.1.1.1 Black-Box vs. White-Box 

PPML literature classifies privacy attacks depending on the adversary's view of the model, making a 

distinction between black-box attacks and white-box attacks. In black-box attacks, the adversary can only 

access the model's output for arbitrarily chosen inputs but lacks information about model parameters. While 

in white-box attacks, the adversary has full access to the model's architecture, parameters, and 

hyperparameters used during training. This enables them to compute any function of the model parameters 

and any chosen input, including intermediate computations of the feedforward pass, i.e. output of 

intermediate layers. For labelled input, the adversary can hence compute the corresponding loss and the 

gradients for each layer. 

 

4.1.1.2 Active vs. Passive 

PPML literature also distinguishes between passive and active behaviour for privacy attacks. A passive 

adversary can only observe the legitimate model updates and attempt to infer information by performing 

inference on the model, without changing anything in the local or global collaborative training procedure. 

In contrast, an active adversary influences the target model during training in order to coerce the data owners 

into unintentionally releasing more information through the model. The active adversary's actions may 

include choosing specific artificially crafted inputs (not originally included in the training dataset of the 

corrupted training client, or not drawn from the population distribution) for the training procedure, or 

performing gradient ascent on specific inputs. 

 

4.1.1.3 Supervised vs. Unsupervised 

When it comes to inferring information about the training dataset of a given model, it is also possible to 

distinguish between supervised and unsupervised attacks. In supervised attacks we assume the adversary 

already knows a portion of the training dataset. On the other hand, in unsupervised attacks, there is no such 

assumption, and the adversary is not assumed to possess any data point belonging to the training dataset. 

 

4.1.1.4 Central vs. Distributed 

Finally, privacy attacks can also be classified depending on whether they target model trained by a single 

party or by a federation composed of multiple data owners. We will describe the latter scenario in more 

detail in Section 4.2. 

 

4.1.2 Attacker’s Goal 

Privacy attacks are typically categorized based on the specific type of information they aim to extract. 

Following the taxonomy provided by Rigaki et al. in their survey [3], we can classify privacy attacks into 

three categories: membership inference, model inversion, and property inference. For each category we 

describe the adversary’s goal, the causes of the privacy leakage, some available mitigations, and an actual 

state-of-the-art attack from each given category. 
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4.1.2.1 Membership Inference 

Membership inference attacks aim to determine whether or not a given data point was part of the training 

data set. These attacks exploit the intrinsic difference in the model’s behaviour when performing predictions 

over known training data versus unseen data. Membership inference attacks reveal how much a model 

retains from its training data, helping to gauge the potential effectiveness of other privacy attacks such as 

data reconstruction, but they can also pose significant privacy risks on their own. For instance, consider 

being able to determine whether a specific patient's data was used to model the efficacy of a particular 

cancer treatment. 

 

Since the introduction of the first membership inference attack by Shokri et al. [4], numerous studies have 

investigated the underlying causes of membership leakage in ML models. The primary contributing factor 

to membership leakage appears to be model overfitting or poor generalization [4, 5]. Several factors can 

exacerbate this issue, including a limited number of training samples [4, 6], high model complexity leading 

to overparameterisation [2], and high feature dimensionality [4]. 

 

A state-of-the-art attack in the membership inference category is the white-box attack by Nasr et al. [2]. 

Like other lines of work, Nasr et al.’s attack treats membership inference as a binary classification task, and 

it trains a machine learning model to accomplish this task. We describe the supervised version of their 

attack, in which the adversary is assumed to know a portion of the private training dataset and uses this 

knowledge to perform supervised training of the attack model. Given a target data point, the attacker 

performs a feedforward pass of the model over it, computing hidden layer outputs, loss, and subsequent 

backpropagation to calculate gradients for each layer. 

These computed values, along with the true label, serve as input features for the attack model. The attack 

model suggested by the authors consists of a fully connected or convolutional component for each 

aforementioned value. Those components are then all connected to another fully connected component that 

produces a scalar output representing the membership probability of the input. 

 

4.1.2.2 Model Inversion 

Model inversion, also known as reconstruction attack, aims to recreate training samples and, in some cases, 

their associated labels. There are two main types of model inversion attacks: those that aim to reconstruct 

actual training samples [7, 8] and those that aim to craft a class representative [9, 10]. The latter type is 

particularly useful when all samples associated with a given label are similar, such as faces of the same 

person, or when the attacker has no prior knowledge about what a specific label encodes. 

 

The effectiveness of model inversion attacks has been shown to increase with the target model's level of 

overfitting [5] and its predictive power, as measured by loss minimization [11]. To mitigate these attacks, 

one suggested approach is to partially prune the gradients before updating the model [7]. 

 

One of the first model inversion attacks on neural networks was developed by Fredrikson et al. [9]. The 

attacker crafts a dummy input for the target model and then uses gradient descent to optimize the dummy 

input. The high-level idea is that, instead of fitting the model parameters to the input, the attacker computes 

the gradient of the loss function with respect to the input and fits the latter to the model parameters. In 

contrast, other model inversion attacks use generative models to construct class representative. For instance, 

Hitaj et al. [10] proposed a method based on Generative Adversarial Networks (GANs). In this approach, 

the attacker designs a generator 𝐺 with the purpose of producing examples for a specific class 𝑦, using the 

target model itself as the discriminator. The generator takes noise 𝑥𝜖 as input and generates 𝑥𝑦 = 𝐺(𝑥𝜖), 

intended to represent class 𝑦. The parameters of 𝐺, denoted as 𝜃𝐺, are optimized to minimize 𝐿(𝑓(𝑥𝑦), 𝑦), 

which indicates how confidently the model classifies 𝑥𝑦 as 𝑦. Another model inversion attack by Zhu et al. 

[7] assumes that the attacker has access to the gradients ∇𝐿(𝑓(𝑥), 𝑦) computed by a training party for a data 

point (𝑥, 𝑦), e.g., in a collaborative learning setting when the attacker corrupts the supporting server (with 

no secure aggregation ongoing) or if the attacker corrupts all parties but the target one. The attacker 

initialises a dummy data point (𝑥′, 𝑦′), computes the corresponding gradients ∇𝐿(𝑓(𝑥′), 𝑦′), and minimises 

the distance between these dummy gradients and the original gradients, which in turn brings the dummy 

input (𝑥′, 𝑦′) closer to the original (𝑥, 𝑦). To solve the minimization problem, the attacker differentiates 
|∇𝐿(𝑓(𝑥′), 𝑦′) − ∇𝐿(𝑓(𝑥), 𝑦)| with respect to (𝑥′, 𝑦′) and uses GD to find a local minimum (𝑥′, 𝑦′). 
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4.1.2.3 Property Inference 

Property inference attacks aim to extract properties about the training samples that are uncorrelated to the 

learning task at hand. For example, in a face recognition task, where the goal is gender classification, the 

attacker might try to infer whether people in the training dataset are wearing sunglasses. Similarly, for a 

model designed for handwriting recognition, the attacker may attempt to determine the font used to write 

the messages (e.g., cursive or block letters). 

 

The underlying conditions and factors that enable property inference attacks are not yet fully understood 

[3]. It remains unclear what specific characteristics or vulnerabilities in a model make it susceptible to such 

attacks. Surprisingly, these attacks have shown effectiveness even on well-generalized models, and the 

relationship between their efficacy and overfitting is still unclear [12, 13]. It has been suggested that sharing 

only a small portion of the gradients, as in the collaborative approach by Shokri and Shmatikov [14], may 

contribute to mitigate these attacks [13]. 

 

To carry out a property inference attack, the adversary needs access to samples both with and without the 

property they want to infer. They calculate the gradients of the target model for both types of samples and 

trains a binary classifier to distinguish between the gradients of samples with the property of inference and 

samples without it. In collaborative learning, the adversary can obtain the gradients of honest parties by 

computing the difference between two subsequent model updates. However, if the adversary only has 

access to aggregated data from other parties, the attack may become less effective as the number of honest 

parties increases. 

 

4.2 Federated Learning (FL) as a Privacy Enhancing Technology 

FL is a collaborative learning approach where multiple data-owning clients jointly train a common model 

while keeping their data decentralized. Although developed as a privacy-preserving solution, recent lines 

of work show that this approach indirectly leaks information about the model’s training data. 

 

4.2.1 Recap of FL 

The demand for more complex and accurate machine learning models in fields like image recognition and 

natural language processing has highlighted the need for extensive training data [15]. As a result, 

collaboration among data-owning entities has become crucial to leverage larger and more diverse datasets 

and enhance model performance. However, this collaborative approach raises privacy concerns, as sharing 

raw data can expose sensitive information, potentially violating privacy regulations and raising 

confidentiality concerns. To address this issue, collaborative learning solutions, like FL [16] and Split 

Learning (SL) [17], have been proposed. Those methods aim to protect privacy by enabling the training of 

a joint model without directly outsourcing the raw data. 

 

Originally, Shokri and Shmatikov [14] introduced an FL scheme for neural networks where clients 

independently train local models on their datasets, while sharing portions of their model parameters with a 

global model hosted by a supporting server. The training process is asynchronous, with each client 

repeatedly downloading portions of the global model parameters, updating its local model, and then 

uploading portions of the gradients to the global model. However, a more widely adopted approach for FL 

is Federated Averaging (FedAvg), as proposed by McMahan et al. [16]. In FedAvg, the training process 

occurs in synchronous rounds. In each round, a subset of clients is selected to participate. These clients 

perform a local training step on their own data, updating their model parameters. These locally trained 

models are then sent to the central server, where they are averaged together to obtain a new global model. 

The aggregated global model is then distributed back to all participating clients. 

 

4.2.2 A Privacy Illusion 

FL was designed as a privacy-preserving approach to distributed learning, supposed to protect the privacy 

of the training data. Unfortunately, the recent developments in the PPML literature have shown that, even 

if the raw training data is not exposed, some information about them can be extracted from the model 

updates (i.e., gradients). The publication of white-box privacy attacks that specifically target the federated 

setting has made evident that solely withholding the training data is an insufficient strategy to ensure privacy 
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protection in these scenarios [2, 13, 9, 10, 7]. These attacks can be carried out during the training stage (in 

addition to the threats during the inference phase) by an adversary who may corrupt one or more training 

clients and potentially the supporting server, making it possible to run these privacy attacks on the 

intermediate model updates. 

 

4.2.2.1 Threat Actors: Aggregator vs. Clients 

Besides the usual threat actor of the central setting (i.e., the querier), in the federated setting privacy attacks 

can be performed also during training in a white-box fashion against the joint model at each round. The 

actors that have access to these intermediate models are: 

- the aggregator, and 

- the training clients. 

Note that an adversary that is able to corrupt the aggregator will have a much better view compared to the 

individual training clients. In fact, the aggregator has access to the individual model updates, and they can 

extract information about a specific local training dataset. On the other hand, a training client can only see 

the joint update (as the difference of two subsequent global model instances), and even by removing its 

own contribution, they would not be able to distinguish between the different contributions of the remaining 

clients. 

 

4.2.3 Overview of Available Solutions 

To mitigate such attacks, solutions based on DP [14, 18, 19], FHE [20], and MPC [21, 22, 23] have been 

introduced. However, these solutions come with trade-offs: DP introduces noise to protect privacy but may 

lead to accuracy loss; FHE provides strong privacy guarantees but has a high computation cost for deep 

arithmetic circuits that require bootstrapping, making it an unfeasible approach in many practical training 

contexts; MPC may require a large number of interactions between multiple parties and high 

communication bandwidth. 

 

4.2.3.1 Differential Privacy 

In the context of PPML, our goal is to protect the privacy of individual data records used to train the model 

by incorporating differential privacy into the training mechanism. Specifically for deep learning, achieving 

differential privacy involves injecting controlled noise in one or more parts of the training process [24], 

which usually comes at the cost of model's accuracy. The elements that can be subject to noisy perturbation 

include: 

- input: adding noise directly to the input data, namely sanitising the dataset; 

- loss function: incorporating noise into the loss function used during training; 

- output: applying noise to the output of the training mechanism, that is the trained model 

parameters; 

- label: introducing noise to the ground-truth labels during training; 

- gradient [18]: perturbing the gradients, which is the most commonly used approach to achieve 

private deep learning, as it achieves a good trade-off between privacy and accuracy. 

 

In collaborative learning settings, differential privacy can be applied not only at the data level [14] but also 

at the client level [19], to conceal the presence of the individual training parties. However, the latter requires 

a substantial number of clients to participate in the protocol to achieve meaningful privacy guarantees. In 

our work, following the approach of [14], we employ data level differential privacy by injecting noise into 

the gradients during training. 

 

4.2.3.2 Secure Aggregation 

Since the supporting server could also be compromised, some techniques have been designed to conceal 

individual model updates to the aggregator by performing secure aggregation of such values. Instead of 

sending the model updates to the orchestrator at the end of each round, the training parties run a protocol 

that outputs the aggregated update, which is sent to the orchestrator. The orchestrator’s only job is then to 

apply the aggregated update to the global model and send back the result to the training parties. To have an 

immediate grasp of the effect of this mitigation, think about membership inference attacks: targeting a 

specific data point in a joint update is much more difficult than in an individual update, due to the “hiding 

in the crowd” effect. Secure aggregation can be based on different technologies: 
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- secret sharing [25], 

- multiparty homomorphic encryption [26, 27], or 

- additive masking [28, 29]. 

However, this security measure does still expose the global model to all the actors involved during training, 

making the leakage from intermediate (aggregated) models still a concern. 

 

4.2.3.3 Training with Secret Sharing based Multiparty Computation 

To prevent information leakage from the intermediate model updates, MPC can be employed, allowing the 

data owners to jointly execute the entire training mechanism in a secure manner, usually by exploiting 

secret sharing schemes. An FL protocol can be seen as an MPC, where: 

- the players are the training parties; 

- the function to be jointly evaluated is the training of a model, and the output of this function is the 

trained model itself; 

- the distributed private inputs are the local training datasets. 

 

However, a major challenge arises when scaling to a large number of parties, as it leads to impractical 

communication complexity. To work around such overhead, the data-owners can delegate the computations 

to a small cluster of non-colluding servers, usually composed of 

- 2 parties: SecureML [30]; 

- 3 parties: ABY3 [22], Falcon [21], SecureNN [23], or 

- 4 parties: FLASH [31], Trident [32]. 

However, this delegation-based approach imposes strong assumptions on the non-collusion of the 

computing servers, strongly constraining the threat model. In the specific case of RE-SAMPLE, a direct 

application of MPC-based approaches would prevent a scalability of a n-out-of-n security model for more 

than 3 hospitals. 

 

4.2.3.4 Training under Encryption 

To overcome the limitations of small cluster MPC solutions to the threat model, a promising research 

direction has emerged, leveraging FHE schemes to encrypt the model. By employing FHE, the federated 

learning process can be conducted entirely under encryption, enabling secure collaboration among a large 

number of parties. Related literature is limited but promising: 

- SPINDLE [33] for generalized linear models; 

- POSEIDON [20] for neural networks. 

While scaling well in terms of communication complexity, these solutions suffer from high computational 

overhead due to the heavy costs associated with performing operations under encryption, making their use 

unfeasible in real-world applications. We will see more about this kind of approach and its limitations in 

Section 5.2. 

 

4.3 The importance of PPML for RE-SAMPLE 

In the context of RE-SAMPLE, three hospitals (and potentially more in the future) collaborate to train a 

joint ML model on privacy-sensitive medical data. The sensitivity of medical data precludes its outsourcing 

to third-party entities for model training, making the adoption of FL-like solution necessary. 

 

In this scenario, a potential adversary could corrupt one or more hospitals, and/or the supporting server 

hosting the aggregator. Our goal is then to prevent the adversary from stealing the information from the 

uncorrupted hospitals by adopting PPML measures both during the training and prediction phase. 
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5. Federated Training under Fully Homomorphic Encryption (FHE) 

As mentioned in Section 4.2.3.4, an effective defence against white-box privacy attacks in the federated 

setting involves using FHE to encrypt the model and perform the entire training process under encryption. 

By adopting this approach, potential adversaries are prevented from accessing any meaningful information 

about the model’s parameters, as all computations are performed on encrypted data. In this section, we 

provide some additional details on FHE schemes, in particular about the CKKS scheme [34], and its usage 

in a multiparty setting [35]. Additionally, we show how to use the multiparty variant of CKKS to perform 

federated learning with an MLP under encryption [20]. 

 

5.1 CKKS and Multiparty FHE 

FHE enables the evaluation of unlimited-depth arithmetic circuits on encrypted data, utilising a technique 

called bootstrapping for refreshing ciphertexts after homomorphic operations. The CKKS scheme [34] is 

well-suited for floating-point-like arithmetic and performs computations on vectors of real/complex 

numbers, allowing for Single Instruction, Multiple Data (SIMD) operations. These properties make the 

scheme particularly suitable for the computations needed by neural network models. 

 

The CKKS scheme works with residual polynomial rings of the form 𝑅𝑞 ≔ ℤ𝑞[𝑥] (𝑥𝑛 + 1)⁄ , for some 

positive integers 𝑞 and 𝑛, with 𝑛 being a power of two. A Residue Number System (RNS) instantiation of 

CKKS [36] is usually adopted, which achieves the highest efficiency for CKKS among known variants of 

the scheme. Here, we briefly describe it at a high level. Given unique primes 𝑞0, 𝑞1, … , 𝑞𝑀, an RNS chain 

of moduli is built as 𝑄𝑖 = ∏ 𝑞𝑗
𝑖
𝑗=0  for 𝑖 ∈ {0,… ,𝑀}. A plaintext is an element 𝑚 ∈ 𝑅 ≔ ℤ[𝑥] (𝑥𝑛 + 1)⁄ , 

which can embed a vector of up to 𝑛 2⁄  slots, as the encoding is a map ℂ𝑛 2⁄ → 𝑅. A freshly encrypted 

ciphertext is a pair 𝑐 ∈ 𝑅𝑄𝑀 × 𝑅𝑄𝑀 . Then, after each multiplication, the ciphertext is rescaled to scale down 

the message and truncate the least significant bits, dropping the highest RNS limb, going from⁡𝑅𝑄𝑖 to 𝑅𝑄𝑖−1 

for 𝑖 > 0. The maximum number of multiplications is given by 𝑀 − 1. However, not all of these levels can 

be used for the main computation as the bootstrapping procedure consumes levels, too. 

 

5.1.1 Homomorphic Properties 

Given two ciphertexts 𝑐0, 𝑐1 encrypting the plaintexts 𝑚0 = (𝑚0,0, … ,𝑚0,𝑛 2⁄ ),𝑚1 = (𝑚1,0, … ,𝑚1,𝑛 2⁄ ), 
respectively, CKKS natively allows for the following homomorphic operations: 

- Addition: 𝑐0 + 𝑐1, which corresponds to the component-wise addition of the underlying plaintexts 

𝑚0 +𝑚1 = (𝑚0,0 +𝑚1,0, … ,𝑚0,𝑛 2⁄ +𝑚1,𝑛 2⁄ ). 

- Multiplication: 𝑐0𝑐1, which corresponds to the component-wise multiplication of the underlying 

plaintexts 𝑚0𝑚1 = (𝑚0,0𝑚1,0, … ,𝑚0,𝑛 2⁄ 𝑚1,𝑛 2⁄ ). 

- Vector rotation: 𝑐0 ≪ 𝑘 for a given 𝑘 ∈ {−𝑛 2⁄ ,… ,0,… , 𝑛 2⁄ }, which corresponds to the rotation 

of the underlying plaintext by 𝑘 positions 𝑚0 ≪ 𝑘 = (𝑚0,𝑘 , … ,𝑚0,𝑛 2⁄ ,𝑚0,0, … ,𝑚0,𝑘−1) (the 

indices are modulo 𝑛 2⁄ ). For convenience, we denote by 𝑐0 ≫ 𝑘 the rotation by −𝑘. 

Note that additions and multiplications can also be performed between a ciphertext and a plaintext. 

 

To perform homomorphic computations efficiently, we can pack an entire vector in a single ciphertext and 

exploit the SIMD capabilities of CKKS to perform vector addition and component-wise multiplication in 

constant time. Note that if the vector is too long to fit the number of slots dictated by given FHE parameters, 

one can split the vector among multiple ciphertexts. However, in a neural network, we also need to multiply 

by weight matrices and evaluate non-linear activation functions. Now, we describe the approaches we can 

adopt to perform efficient vector-matrix multiplication under encryption and homomorphically evaluate 

non-polynomial functions. 

 

5.1.1.1 Matrix Multiplication 

To efficiently perform matrix multiplication under encryption, the idea is to encode the matrix as a vector 

in such a way that only one homomorphic multiplication is required. There exist multiple encoding schemes 

in the literature for matrices. For instance, in the column-based approach [37, 38], one encodes a matrix by 

concatenating its columns one after the other. The vector-matrix multiplication is then performed by first 
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replicating the vector to match the number of columns of the matrix, then performing a SIMD multiplication 

between the two, and finally by performing cumulative addition of the result. All those operations can be 

realized by combining homomorphic additions, rotations, and multiplications by a masking vector. 

Moreover, the vector replication and the cumulative addition can be made more efficient by recursion, 

though requiring padding the inputs to a suitable power of two. Similarly to this column-based approach, a 

row-based encoding can be employed as well [39]. 

 

To perform subsequent matrix multiplications, it is convenient to use the alternating packing approach 

proposed in [20]. It is based on the observation that the result of a vector-matrix multiplication in column-

based encoding requires extra rotations to prepare it for a multiplication with another column-based 

encoded matrix, while it is perfectly ready for a multiplication with another row-based encoded matrix. The 

idea is then to encode the matrices that are in consecutive secret layers by alternating between column- and 

row-based encodings. Note that multiplying by the transpose of a matrix is equivalent to multiplying by the 

matrix in the opposite encoding. We can exploit this property to efficiently compute gradients in the back-

propagation step. 

 

5.1.1.2 Evaluating Non-Polynomial Functions 

By combining additions and multiplications it is possible to evaluate any polynomial function. However, 

when it comes to non-polynomial functions like the exponential function, we need to find alternative 

solutions. To evaluate non-polynomial functions with an FHE scheme, a possible strategy consists of using 

a high-degree polynomial to approximate the given function. This is usually done by exploiting the 

Chebyshev interpolation algorithm, which assures uniform convergence within a given interval [𝑎, 𝑏]. Note 

the importance of correctly estimating the input range of the function to assure the correctness of the 

function evaluation. 

 

5.1.2 Multiparty FHE 

In Multiparty Homomorphic Encryption (MHE), the secret key is shared among multiple parties, who can 

use their shares to collectively generate joint public/evaluation keys and perform distributed decryption and 

bootstrapping protocols. MHE comes in two fashions, depending on the access structure of the private key: 

- threshold FHE schemes [40], where the secret key and its access-structure are fixed at the 

beginning, and they usually allow for decryption if at least a given number of parties are online; 

- multikey FHE schemes [41], where the secret key and its access-structure are dynamic, each party 

encrypts its data under its own secret key, and the output of homomorphic operations is a ciphertext 

encrypted under the joint keys of the parties involved in that specific computation. 

On the one hand, the multikey FHE approach is more flexible, but on the other hand it also leads to an 

increase in ciphertext size (typically linear) and computation runtime (often quadratic) with the number of 

parties [42], which does not occur with the threshold FHE approach. 

 

For ML applications, we usually consider the threshold FHE version of the CKKS scheme, which follows 

the design of Asharov et al. [43] and Mouchet et al. [35]. Threshold CKKS supports the same operations as 

the regular single-key CKKS. The only differences in threshold CKKS are: 

- the public key generation is now distributed among all parties, each of which generates a public 

key share and broadcasts it to the other parties; these shares are then aggregated into the collective 

public key; 

- the rotation key generation is done in a similar way to the public key generation; 

- the multiplication key generation requires some extra rounds of communication with respect to the 

single-key variant; 

- the decryption is also distributed among all parties, each of which generates a partial decryption 

share and broadcasts it to the other parties; these shares are then aggregated into the decryption 

result; 

- the bootstrapping is done in a similar way to the decryption procedure, with the parties performing 

a masked partial decryption of the ciphertext and then adding an encryption of the negated mask to 

generate a refreshed encryption of the message. The masking requires ~3 additional multiplicative 

levels to achieve the desired statistical security [20]. 

 



   

 

D3.2: Privacy-Preserving Design of ML              Page 20 of 42 

The main drawbacks of MHE that often make it impractical in real-world contexts are the heavy 

computation costs and the significant communication overhead, especially due to the need for distributed 

bootstrapping, which can become a bottleneck in practical implementations. This is particularly relevant in 

ML scenarios when evaluating deep multiplicative circuits like neural networks. Additionally, the inherent 

noise in the encryption scheme and the approximation of non-linear functions can lead to a decrease in the 

model’s accuracy. 

 

5.2 Available Solutions for FL under FHE 

Currently, the only available works that propose designs for FL under FHE are 

- SPINDLE [33] for generalized linear models, and 

- POSEIDON [20] for dense and convolutional neural networks. 

 

Since deliverable D3.1 lists dense neural networks among the models that are deemed suitable for RE-

SAMPLE, we will provide a privacy-preserving solution for a MLP model. Here, we focus on the 

description of POSEIDON. In this solution, the training parties instantiate the multiparty version of CKKS 

by performing a distributed generation of the keys. The orchestrator receives the public key, along with 

multiplication and rotation keys. Then, the orchestrator initialises the model’s parameters, encrypts them, 

and the federated training process starts. All the computations are performed under encryption for a given 

number of iterations, after which the encrypted model can be used for prediction. 

 

The inference phase can also be performed obliviously. The querier encrypts its query using the collective 

public key and sends the corresponding ciphertext to the training parties. Then, one of those performs a 

feedforward step of the model for the given encrypted input. The encrypted result undergoes a distributed 

decryption procedure, where each party computes its decryption share and sends it to the querier. Finally, 

the querier aggregates the shares to get the decryption of the model’s output. Note that in this oblivious 

inference process none of the training parties can see the query’s input nor output in plaintext, hence fully 

preserving the query’s privacy. 

 

5.2.1 Performance Limitations 

Unfortunately, this solution is quite impractical for deep models or big datasets, since a training that would 

last a few hours in plaintext takes a few months under encryption [20]. The main cause for such a 

performance overhead is twofold: 

- the high computational cost for the homomorphic operations, in particular for evaluating non-linear 

activation functions such as sigmoid and ReLU; 

- the communication cost given by the bootstrapping protocol, which is distributed and must be 

invoked after every 1-2 layers. 
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6. Proposed Solution: Partial Encryption of the Model 

In this section we describe the proposed PPML solution for RE-SAMPLE, built upon the fully encrypted 

solutions presented in Section 5. The underlying idea is that encrypting the full model might be unnecessary, 

as different portions of the model might leak different amounts of information. This leads to a trade-off 

between efficiency and privacy, orthogonal to the one between privacy and accuracy already provided by 

differential privacy. Here, we describe the general solution and assess it against state-of-the-art privacy 

attacks on publicly available datasets. 

 

6.1 Design and Workflow 

A flexible collaborative learning protocol that allows users to trade off privacy for efficiency has been 

designed. Our approach involves using an FHE scheme to encrypt the most vulnerable parts of the model 

and performing federated training on this partially encrypted model. The level of privacy protection is 

determined by the selection of layers to be encrypted (secret layers ℒ𝑆), while the remaining layers are left 

in plaintext (exposed layers ℒ𝐸). The more layers we encrypt, the less information potential adversaries can 

access, thus enhancing privacy, but it also leads to more computations performed under encryption, thus 

reducing efficiency. This flexibility allows our approach to achieve greater privacy than employing standard 

FL [16], while achieving a more practical level of efficiency than fully encrypted solutions [33, 20]. 

 

When performing feedforward and backpropagation on the model, we need to be careful about how to 

switch from secret to exposed layers and vice versa. Computations are conducted under encryption 

whenever an encrypted layer is encountered, possibly invoking bootstrapping to refresh intermediate 

computations. When an exposed layer is encountered, a decryption is called to allow continuing the training 

pass in plaintext (see Figure 1). 

 
Figure 1: Diagram representation of the approach: encryption of a hidden layer on the left-hand side, 

encryption of the output layer on the right-hand side 

6.1.1 Protocol Description 

We describe the protocol for MLP models, trained with Stochastic Gradient Descent (SGD) optimizer, and 

Mean Squared Error (MSE) loss, but it can be easily generalized to any feed-forward model. Including 

simple momentum-based optimizers such as Nesterov Accelerated Gradient is straightforward and only 

requires an additional weight update. While adaptive optimizers such as AdaGrad [44], RMSProp [45], and 

Adam [46] may require additional care due to the division by the rescaling coefficient. 

 

6.1.1.1 Global Training 

The protocol involves 𝑁 training parties 𝑃1, … , 𝑃𝑁 and a central server 𝑆, whose role can potentially be 

taken by any 𝑃𝑖. The parties want to jointly train an MLP model, thus they agree on the model depth 𝐿, 

architecture, activation functions, training hyper-parameters, and on the set of layers to encrypt ℒ𝑆. The 

central server initiates the protocol by coordinating the FHE setup and key-generation phase, at the end of 
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which 𝑃1, … , 𝑃𝑁 have their own private shares, and all actors possess the corresponding public key, 

relinearization, and rotation keys, which allow all parties to perform the necessary homomorphic 

operations. The central server initialises the model 𝑓 in plaintext, by generating random weight matrices 

𝑤1, … , 𝑤𝐿 and bias vectors 𝑏1, … , 𝑏𝐿 of appropriate sizes, according to the distribution given by the chosen 

initialization technique. Then, it uses the public key to encrypt the parameters 𝑤𝑖, 𝑏𝑖 corresponding to the 

secret layers 𝐿𝑖 ∈ ℒ𝑆, after proper encoding (see Section 5.1.1.1). 

 

At this point, the training starts, and proceeds as in standard FL. The central server broadcast the partially 

encrypted model to 𝑃1, … , 𝑃𝑁. Each party 𝑃𝑖 performs a certain number of local training iterations, and 

sends back the updated local model to the central server. The central server finally aggregates the local 

models, by averaging the parameters, using homomorphic addition and scalar multiplication by 1 𝑁⁄  for 

the ones in ℒ𝑆. These steps are repeated for a fixed number of iterations 𝐸𝑔 or until some convergence 

condition is satisfied (see Protocol 1). 

 

 
Protocol 1. Global Training. 

 

6.1.1.2 Local Training 

The local training subroutine, presented in Protocol 2, involves each party 𝑃𝑖 performing 𝐸𝑙 model updates 

locally before updating the central model. During each local update, a batch of size 𝐵 is sampled from the 

local training set 𝐷𝑖. For each example in the batch, one training step is performed, which includes 

feedforward and backpropagation to compute gradients. These gradients are then averaged across the batch 

sample and used to perform a local model update. After 𝐸𝑙 updates, the local model is sent to the central 

server, which proceeds to the aggregation step. We can add L2 regularization at the cost of an additional 
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plaintext-scalar multiplication, by multiplying the weight matrices by 1 − 𝜂𝜆 𝐵⁄  just before line 8, where 𝜆 

is the weight decay coefficient. 

 

 
Protocol 2. Local Training. 

 

Protocol 3 outlines one training pass of our approach. To feedforward an input through a partially encrypted 

model, we begin by feeding the vector in plaintext starting from the input layer. When an encrypted layer 

is encountered, the computation proceeds under encryption, with bootstrapping being called when 

necessary (we omit bootstrapping calls from the protocol description since their call frequency depends on 

the FHE parameters). As soon as an exposed layer is reached, a distributed decryption is invoked. The same 

process is followed during the backpropagation step. Note that if the last layer is encrypted, the loss is also 

computed under encryption. 

 

 
Protocol 3. One Training Pass. 

 

Unless we are at the last layer of the model, decrypting just after the linear transformation at line 5 is 

optimal. To show this, let us consider the case we are at the end of a group of encrypted layers, that is we 

are at layer 𝐿𝑗 for some 𝑗 < 𝐿, with 𝐿𝑗 ∈ ℒ𝑆 and 𝐿𝑗+1 ∈ ℒ𝐸. If instead of decrypting 𝑢𝑗, we perform an 

additional step under encryption, and decrypt after the evaluation of 𝜙𝑗(𝑢𝑗), then an adversary could just 

invert the activation function if bijective (e.g., sigmoid) or still get information about 𝑢𝑗 for most of the 
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activation functions commonly used. If we keep going under encryption for a step further, and decrypt for 

instance after the next linear transformation 𝑢𝑗+1 in order to keep 𝑙𝑗 private, then, since 𝐿𝑗+1 ∈ ℒ𝐸, we 

would need to invoke a decryption for ∇𝑤𝑗+1, which depends on 𝑙𝑗. However, an adversary could easily 

retrieve 𝑙𝑗 given ∇𝑤𝑗+1 and ∇𝑏𝑗+1, which is also in plaintext since 𝐿𝑗+1 ∈ ℒ𝐸. Similar remarks hold for the 

decryption of the error in the backpropagation phase at line 15. 

 

Consequently, when encrypting a single non-output layer, the corresponding layer output and gradient 

cannot be protected. Thus, to protect the initial or central portions of the model, at least two consecutive 

layers need to be encrypted, and even in that case, the gradient of the bias of the last layer of that group will 

be exposed. One approach to address this limitation is to omit the bias parameters on that specific layer. 

 

An additional argument against encrypting only one non-output layer is the potential for an adversary to 

reconstruct the encrypted parameters. If the adversary can gather enough input and output pairs (𝑥, 𝑦), 
where 𝑦 = 𝑤𝑥 + 𝑏, they could retrieve the values of 𝑤 and 𝑏 by solving a system of linear equations with 

the layer parameters as the unknowns. Encrypting two consecutive layers (or the last one), already makes 

the system of equation significantly harder to solve. The system will involve many more variables and the 

activation function of the first layer as well, which is typically non-linear. As an additional measure, 

lowering the precision of the FHE scheme and introducing additional noise in the ciphertext can further 

complicate the reconstruction of the encrypted layers. 

 

6.1.1.3 Prediction 

After completing the training phase, the partially encrypted model can be directly used for predictions. 

However, cooperation among the training parties remains necessary for distributed bootstrapping and 

decryption calls. Prediction queries can be initiated by any of the training parties or an external entity. If 

the querier is one of the training parties, they can locally conduct the feedforward step and seek assistance 

from the others only for bootstrapping and decryption, including the potential output decryption if the last 

layer is also encrypted. If the querier is an external entity, additional precautions are needed due to the 

presence of exposed layers. To ensure the privacy of the query, the querier encrypts their input with the 

collective public key of the FHE scheme, and sends the encrypted input to one of the training parties. The 

selected party will then perform the feedforward pass on behalf of the querier. In this case, operations on 

the exposed layers must be adapted to work under encryption. While matrix multiplication and bias addition 

remain straightforward, the activation functions need to be approximated to be homomorphically evaluated, 

leading to a potential loss of accuracy. Moreover, unlike during training, the output of a group of adjacent 

layers should not be decrypted. (Note: It is possible to perform plaintext operations in exposed central 

layers, when they are sufficiently distant from both the input and output layers to lower the possibility of 

reconstructing the query input or output.) The final output of the model then remains encrypted, regardless 

of whether the last layer is private or not. At this point, the training parties can send the decryption shares 

of the output to the querier, who can then reconstruct the output in clear. 

 

6.2 Assessment on Public Datasets 

In this section, we evaluate our partially encrypted model approach for different choices of ℒ𝑆. Note that 

we conduct our experiments in this document in order to demonstrate the general approach and assess the 

trade-off of our approach for different data sets. Further experiments in the RE-SAMPLE specific context 

will be provided in D4.5: Proof-of-concept privacy-preserving ML and data aggregation and D4.6: Report 

on the final parameter selection at a later stage of this project.  

 

6.2.1 Experimental Setup 

We implement the prototype in C++, building on top of the OpenFHE library [47] for the multiparty CKKS 

functionalities (available at https://github.com/openfheorg/openfhe-development). Our implementation 

uses CKKS with a 5-bit integral precision, 55-bit decimal precision (scaling factor), a moduli tower with 8 

levels, and a cyclotomic ring degree of 215. We use an 𝑁-out-of-𝑁 threshold scheme with additive sharing 

of the secret key, where all parties need to be present to perform decryption and bootstrapping. But the 

scheme can be easily modified to allow for arbitrary thresholds, i.e., 𝑡-out-of-𝑁 threshold FHE using Shamir 

secret sharing. To assess the performance of our prototype in a realistic scenario, we run the experiments 

https://github.com/openfheorg/openfhe-development
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within Mininet (available at https://github.com/mininet/mininet), a network emulator that allows us to 

configure different network topologies and impose constraints on bandwidth and network delay. Different 

virtual hosts are spawned within a server with an Intel Xeon Platinum 8358 running at 2.60 GHz, with 64 

threads on 32 cores, and 512 GB RAM. For the evaluation in particular, we consider a setup with 3 training 

parties and a central server, communicating over TCP in a star topology network. The communication is 

constrained by 1Gbps bandwidth and 10ms network delay between the nodes. 

 

Each party is provided with 30 examples from the MNIST dataset, and they jointly train an MLP model 

with two hidden layers of size 30, 20. Each layer uses sigmoid activation functions, which is approximated 

in [−10, 10] by a polynomial of degree 13 for HE evaluation. To simplify the analysis of the trade-off given 

by the choice of ℒ𝑆, we decided to focus on the specific case of encrypting only one group of contiguous 

layers containing the output layer, which, from the investigation in [2], seems to be one of the most 

meaningful settings for our approach when considering inference attacks. That is, given a model 𝑓 of depth 

𝐿, we then have ℒ𝐸 = {𝐿1, … , 𝐿𝑇} and ℒ𝐸 = {𝐿𝑇+1, … , 𝐿𝐿} for some 𝑇 ∈ {0,… , 𝐿}. This way, the trade-off 

is controlled by the one-dimensional parameter 𝑇: when 𝑇 = 0 we are in the extreme case of FL with full 

encryption of the model [20], while when 𝑇 = 𝐿 we are in the extreme of FL in plaintext [16]. We report 

the results for the non-optimized version of our framework. 

 

6.2.2 Datasets and Models Description 

We selected well-known public datasets widely used in the PPML literature: with Texas-100, Purchase-

100, Locations our datasets include tabular data, and with AT&T, MNIST, EMNIST Letters, LFW our 

datasets include images. This mix ensures a comprehensive evaluation of the privacy attacks in our 

prototype. We highlight that this work’s main goal is not to achieve the highest possible accuracy on the 

given datasets, but to investigate the efficacy of privacy attacks across different layers of our target model. 

To accomplish this, we deliberately subsampled some of the datasets, using a reduced dataset for training 

the models. By doing so, we aim to create a vulnerable model that is more susceptible to privacy attacks. 

There are various ways to make a model vulnerable, constraining the training set to a subset is comparable 

with real-world scenarios, where training parties might struggle with limited data availability. This 

approach also helps in expediting the experimental assessment of our encrypted training solution, as the 

experiments can be run within a reasonable timeframe given the reduced training data size. 

 

As for the models, we primarily focus on MLP architectures, for compatibility with our FHE prototype, 

using the plain SGD optimizer and minimising the MSE loss. Specifically, we train an MLP with two 

hidden layers of size 30 and 20 on the MNIST datasets, and 256, 128, and 64 on the Location dataset. For 

Purchase100 and Texas100, we adopt the MLP architecture proposed in [2], which consists of hidden layers 

with sizes 1024, 512, 256, and 128. Additionally, we train an MLP with two hidden layers of size 64 on the 

EMNIST Letters dataset, and a Convolutional Neural Network (CNN) on the LFW dataset. For the CNN, 

we adopt the architecture proposed in [13], which consists of three convolutional layers with 32, 64, and 

128 filters, each with a 3x3 kernel and a max pooling layer, followed by two fully connected layers of size 

256 and 2. 

 

We will now give a more detailed description of the datasets we used for our experiments. 

 

AT&T Database of Faces. This face dataset (available at https://cam-orl.co.uk/facedatabase.html) was 

created at the AT&T Laboratories Cambridge. It consists of 400 grey-scale images of size 112x92, depicting 

the faces of 40 individuals in various lighting conditions and facial expressions. 

 

EMNIST Letters. This letter dataset (available at https://www.nist.gov/itl/products-and-services/emnist-

dataset) is part of the extended version of the MNIST dataset by NIST [48]. It consists of 145,600 grey-

scale images, representing both upper- and lower-case handwritten letters, which has been centred and 

resized to 28x28. The dataset contains 26 classes, one for each letter from 'a' to 'z'. 

 

Labelled Faces in the Wild (LFW). This face dataset (available at http://vis-www.cs.umass.edu/lfw/) was 

developed by researchers at the University of Massachusetts, Amherst [49]. It consists of 13,233 RGB 

https://github.com/mininet/mininet
https://cam-orl.co.uk/facedatabase.html
https://www.nist.gov/itl/products-and-services/emnist-dataset
https://www.nist.gov/itl/products-and-services/emnist-dataset
http://vis-www.cs.umass.edu/lfw/
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images, depicting the faces of 5,749 individuals. The dataset has been further labelled with attributes such 

as gender, race, age group, hair style, and eyewear. 

 

Locations. This location dataset (available at https://github.com/privacytrustlab/datasets) was created by 

the authors of [4] from Foursquare check-in data for the city of Bangkok. The processed dataset contains 

5010 examples, each corresponding to a unique user. Each record comprises 446 binary features, indicating 

whether a user visited a specific region or location type. The data is clustered into 30 classes, representing 

different geosocial types. Following [4], we use 1200 examples for training, and the remaining data for 

validation. 

 

MNIST. Standard handwritten digits dataset by NIST (available at 

https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz). It consists of 70,000 grey-scale 

images, centred, and resized to 28x28. The dataset contains 10 classes, one for each digit from '0' to '9'. Due 

to the small number of classes and the low feature variability within the same class, this dataset has been 

observed to be particularly resilient against membership inference attacks [4]. For evaluation purposes, we 

want to start from a situation in which the target model is vulnerable. Thus, we drastically reduce the 

training set to a mere 100 examples. For compatibility with our current implementation of the prototype, 

we resize the images to 8x8. 

 

Purchase-100. This purchase dataset (available at https://github.com/privacytrustlab/datasets) was created 

by the authors of [4] starting from Kaggle's “acquire valued shoppers” challenge dataset, containing the 

shopping history data of several users. The processed dataset contains 197,324 examples, each 

corresponding to a unique user. Each record comprises 600 binary features, indicating whether a user 

purchased a given product. The data is clustered into 100 classes, representing different purchase styles. 

For our experiments, we use 1000 examples for training and the remaining data for validation. 

 

Texas-100. This hospital dataset (available at https://github.com/privacytrustlab/datasets) was created by 

the authors of [4] starting from the Hospital Discharge Data records released by the Texas Department of 

State Health Services. The processed dataset contains 67,330 examples, each corresponding to a unique 

patient. Each record comprises 6,169 binary features, containing information about the patient, the causes 

of injury, the diagnosis, and the procedures the patient underwent. The data is clustered into 100 classes, 

representing the 100 most frequent medical procedures present. For our experiments, we use 1000 examples 

for training and the remaining data for validation. 

 

6.2.3 Runtime and Communication Performance 

In this section, we discuss the efficiency of the proposed approach in terms of computation time, 

communication time, and communication size, by performing both a theoretical analysis and an 

experimental assessment. 

 

6.2.3.1 Theoretical Analysis 

Compared to a fully encrypted approach, partially encrypted models offer significant efficiency advantages, 

including reduced number of computations under encryption, lighter model updates, and fewer 

communication rounds. Providing a precise efficiency analysis is challenging due to the variable presence 

of bootstrapping and the exceptions to which computation is performed homomorphically depending on 

which layers are encrypted. Nonetheless, we can offer general considerations that cover any choice of ℒ𝑆. 

To simplify the analysis, we assume all layers to have same order of magnitude sizes, and plaintext size 

and operation costs to be negligible with respect to their encrypted counterpart. 

 

In general, since computations are carried out in plaintext in the exposed layers, we expect a lower-bound 

for the gain in computational complexity to be at least linear in the number of exposed layers relative to the 

total number of layers in the model, i.e. |ℒ𝐸| 𝐿⁄ . Additionally, we can avoid the homomorphic evaluation 

of the last activation function in each group of encrypted layers (except the ones containing the last layer). 

Moreover, as the training parties decrypt their computations at the end of each encrypted block, the need 

for distributed bootstrapping decreases or even disappears. This results in gains in computation efficiency, 

communication size, and communication rounds, as each bootstrapping process typically requires one 

https://github.com/privacytrustlab/datasets
https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
https://github.com/privacytrustlab/datasets
https://github.com/privacytrustlab/datasets
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round-trip of communication. This advantage is amplified by the fact that bootstrapping in the CKKS 

scheme needs the ciphertext to have some levels left, further increasing the computational overhead in fully 

encrypted models. Depending on the number of contiguous encrypted layers, even faster somewhat HE 

schemes can be adopted. 

 

Regarding the communication size during model update and broadcast, we again observe a linear gain in 
|ℒ𝐸| 𝐿⁄ , as the model parameters corresponding to exposed layers are sent in plaintext. On the other hand, 

during the aggregation phase, fewer parameters need to be averaged under encryption, leading to an 

additional gain in terms of computational complexity. Finally, we note that in the optimized version of our 

solution, the performance gain factor |ℒ𝐸| 𝐿⁄  changes according to the number of exposed layers across the 

training epochs. 

 

6.2.3.2 Experimental Evaluation 

For the experimental evaluation, we only report the results related to the MNIST dataset, since no significant 

difference appeared among different datasets. As shown in Table 1, the efficiency of our approach scales 

approximately linearly with 𝑇, both in terms of run time and communication size. 

 
Table 1: Execution time and communication size of our approach on the MNIST dataset for a 3-layer MLP, 

with varying levels of layer encryption: none (T = 3), last layer (T = 2), last two layers (T = 1), and full model 

encryption (T = 0) 

 
 

The reported run time and communication size have been averaged among the training parties for 

consistency. In particular, the communication size refers to the total volume of messages received and sent 

per party over 300 epochs of training. The model achieves the same test accuracy as its plaintext 

counterpart. The noise from the FHE scheme and the approximation error of the activation functions do not 

have a significant impact on the training procedure. 

 

In Figure 2, we observe that communication time is the dominant factor on the overall performance. 

 

 
Figure 2: Computation vs. communication time for one training pass in our approach on MNIST for a 3-layer 

MLP, with varying levels of encryption: full model encryption (T = 0), last two layers (T = 1), last layer (T = 2), 

and none (T = 3) 

Note that the high communication and overall run time are partly due to our current implementation being 

still a prototype, and the use of relatively high-degree approximation for the activation functions. We 

acknowledge that there are large margins for optimization, starting from compressing the model updates 

before transmitting them. Also, using a tile-packing of the weight matrices as suggested in [50] may increase 

the performance of our approach. However, our main focus is on comparing the relative efficiency measures 

between different choices of encrypted layers, rather than their absolute values. 
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6.2.3.3 Micro-benchmark 

In this section, we provide measurements for various FHE functionalities, enabling estimation of our 

approach’s scalability for different model architectures. The execution run time and communication size 

per training party, averaged over multiple runs, are presented in Table 2. For each functionality, we have 

divided the execution time into computation and communication time. Note that the missing time from the 

total execution time reflects the idle time when parties are waiting for other parties to complete their 

computations in order to proceed. 

 
Table 2: Microbenchmarks of different FHE functionalities, for 3 parties, 5-bit integral precision, 55-bit 

decimal precision, 8-level moduli tower, and 215 cyclotomic ring degree. The “one layer” functionality refers 

to a fully connected layer, while the “one pass” functionality refers to an entire pass (forward or backward) of 

the model under encryption 

 

6.2.4 Privacy Analysis 

In this section, we sketch a security proof for the encrypted layers of the model, and we discuss the 

capabilities of different types of adversaries for each class of privacy attack against the exposed layers. 

 

6.2.4.1 Security Proof for the Encrypted Layers 

Our approach aims to preserve the privacy of the training data, during both the training and prediction 

phases, by encrypting the most vulnerable layers of the model. In the semi-honest setting, we prove that no 

party, including the central server, can learn more information about the training data of any other party or 

the model parameters corresponding to any layer in ℒ𝑆, other than what can be deduced from their own data 

(including the model output, in case of predictions), and from the parameters and intermediate computations 

of the layers in ℒ𝐸. In the case of predictions requested by an external entity, we can make this claim 

stronger, as the querier should not learn anything, other than what can be deduced from only their own input 

data and the query output. 

 

For the security proof, we proceed as in [20], but assuming the simulator is also given access to the 

parameters of the exposed layers at each iteration, and to the output of each decryption call. The idea is to 

see the overall scheme as a composition of the underlying FHE protocols, which are all simulatable. For 

the basic protocols like key generation and decryption, we rely on the proofs by Mouchet et al. [35], while 

for the distributed bootstrapping, we rely on the proof by Sav et al. [20]. Note that the security of our 

approach does not hold for a malicious adversary, which can exploit the decryption call in the protocol 

decrypt the secret layers. 
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6.2.4.2 Privacy Assessment for the Exposed Layers 

Threat model. We study privacy attacks in the grey-box setting, which represents a more flexible threat 

model generalising white-box scenarios for privacy-attacks, by considering intermediate adversary 

capabilities. In this grey-box setting, the adversary has only access to the subset of the model parameters 

corresponding to the exposed layers, for which the adversary has the same access as in the white-box setting. 

Thus, the adversary can compute the loss value for a given labelled example only if the last layer is exposed. 

Conversely, the adversary has no access to any parameters of the encrypted layers. 

 

In the rest of the section, we discuss whether specific attacks can still run on the exposed layers. We consider 

three threat model configurations, based on the possible combinations of the ML and cryptographic 

adversary’s capabilities: 

1. ML-passive and crypto-passive, where the adversary follows the protocol and can only use inputs 

from the original dataset (no maliciously crafted inputs); 

2. ML-active and crypto-passive, where the adversary follows the protocol but may craft malicious 

inputs for the training procedure; 

3. ML-active and crypto-active, where the adversary can arbitrarily deviate from the protocol and 

may craft arbitrary malicious input. 

Note that the distinction between the first two settings is important in real-world scenarios since it has 

implications in terms of detectability and liability. If a client becomes corrupted during the training process, 

an ML-active attack is potentially more detectable than an ML-passive attack. Detection can occur by 

analysing the intermediate updates or the final model, or by employing some form of commitment to the 

training dataset. 

 

In general, if at least one layer is encrypted, no attack can be carried out in the ML-passive and crypto-

passive settings, as they all require to at least perform an inference on an example not belonging to the 

original training dataset (the target of inference, or the dummy example for model inversion). In the ML-

active and crypto-passive settings, the inference attacks can work limited to the exposed layers, while the 

model inversion attacks can work only if the first layer is exposed. In the ML-active and crypto-active 

settings, all attacks are feasible, as it would be enough to ask for the decryption of the secret parameters. 

The active versions of each attack are possible as well. In Table 3, we outline the capabilities of each attack 

discussed in Section Privacy Attacks4.1 for the threat model configurations described above. Note that, in 

contrast to FL in plaintext, the presence of encrypted layers restricts the adversary from freely conducting 

any inference on the model. 

 
Table 3: Description of attack capabilities in different threat models, for different privacy attacks. For a 

description of the active variant of the attacks, we refer to the corresponding works 

Attack Class ML-passive & 

crypto-passive 

ML-active & 

crypto-passive 

ML-active & 

crypto-active 

Nasr et al. (2019) Membership 

inference 

The attack is not 

possible, since the 

attacker cannot 

pass its target data 

point through the 

model. 

The attack is 

possible, but 

limited to its 

passive variant on 

the exposed 

layers. 

The active variant 

of the attack is 

also possible, 

since the attacker 

can perform 

gradient ascent. 

Fredrikson et al. 

(2015) 

Model inversion The attack is not 

possible, since the 

attacker cannot 

pass the dummy 

input through the 

model. 

The attack is not 

possible if the first 

layer is encrypted, 

since the attacker 

cannot 

backpropagate 

over the input 

layer. 

The attack is 

always possible, 

the malicious 

adversary can 

decrypt the first 

layer if necessary. 

Hitaj et al. (2017) Model inversion The attack is not 

possible, since the 

The attack is not 

possible if the first 

The attack is 

always possible, 
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attacker cannot 

pass the generator 

output through the 

model. 

layer is encrypted, 

since the attacker 

cannot 

backpropagate to 

the generator. 

the malicious 

adversary can 

decrypt the first 

layer if necessary. 

Zhu et al. (2019) Model inversion The attack is not 

possible, since the 

attacker cannot 

pass the dummy 

input through the 

model. 

The attack is not 

possible, since the 

attacker cannot 

compute the 

derivative of the 

gradients with 

respect to the 

input. 

The attack is 

always possible, 

the malicious 

adversary can 

decrypt any layer 

if necessary. 

Melis et al. 

(2019) 

Property inference The attack is not 

possible, since the 

attacker cannot 

pass the target 

batch through the 

model. 

The attack is 

possible, but 

limited to the 

exposed layers. 

The active variant 

is not possible if 

the last layer is 

encrypted. 

The attack is 

always possible, 

the malicious 

adversary can 

decrypt any layer 

if necessary. 

 

More details about the individual attacks is as follows. 

 

Membership Inference. In the grey-box setting, the efficacy of membership inference attacks heavily 

depends on access to the last layers of the model. While the initial layers of a neural network tend to extract 

simple features from the input, enabling them to generalize well, the later layers specialize in detecting 

higher-level abstract features in the input, making them prone to overfitting and memorising the specific 

training examples. For instance, in a CNN model trained for image classification, you can expect the first 

layers to learn more about edges and abstract shapes of the input image, while the last layers more about 

intricate texture and artifacts within those shapes [51]. Moreover, as the neural network progresses to the 

later layers, the parameter capacity increases, causing the target model to store information about the exact 

training samples [2]. This behaviour can be attributed to the vanishing gradient effect, where the impact of 

a training step diminishes for the earlier layers compared to the later layers. Therefore, if the last layers of 

the model are accessible, membership inference attacks tend to be stronger due to the higher degree of 

membership information leakage. 

 

In line with the results by Nasr et al. attacking the last layers, we observe a similar effect for our generalized 

setting: the combination of multiple (intermediate) layers does not leak significantly more membership 

information than the just the last of those layers. For instance, attacking layers 1, 3, and 4 of a given model 

does not provide a significant advantage over attacking just layer 4. Consequently, we simplified our 

experimental setting and attack each layer individually and do not expect significantly different accuracy 

compared to attacks that include any combination of previous layers. In scenarios where the attacker knows 

the ground-truth label associated with the target example, they can perform backpropagation. We account 

for this case by conducting an additional cycle of attacks, where the attack model is provided with the 

ground-truth label, the layer gradient, and, when the last layer is accessible, the loss value. 

 

The number of members and non-members used for both training and testing the attack model is the same, 

resulting in a baseline attack accuracy of 50%. In Figure 3, we present the outcome of our experimental 

assessment on different datasets. We report the average and maximum attack accuracy over four runs. Our 

experimental results confirm the trend of the later layers of a model to leak more information compared to 

earlier layers. In particular, the very last layer leaks considerably more information than the others. This is 

especially evident in the cases of Purchase100 and MNIST, where the attack accuracy for layer output 

increases from 55.12% to 90.10% (~7.8 times increase offset to the baseline) and from 50.81% to 64.49% 
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(~17.8 times increase offset to the baseline), respectively, when passing from the second-to-last layer to the 

last layer. 

 

 
Figure 3: Layer-wise accuracy of the white-box membership inference attack by Nasr et al. (2019) against 

different datasets and models, exploiting both the layer's output and gradient 

Additionally, in line with the findings of Nasr et al [2], our experiments confirm that the availability of 

gradients contributes to a higher attack accuracy. 

 

Model inversion. All the model inversion attacks described in Section 4.1.2.2 share the common 

requirement of computing the derivative of the target model’s loss with respect to the model input: 𝜕𝐿 𝜕𝑥⁄ , 

which can be written as 
𝜕𝐿

𝜕𝑥
=

𝜕𝐿

𝜕𝑙1

𝜕𝑙1

𝜕𝑥
, where 𝑙1 is the output of the first layer. To compute this derivative, the 

attacker then needs access to the first layer's gradients and parameters. Blocking access to the first layer 

straightforwardly prevents the attack by Fredrikson et al. [9]. This limitation also prevents backpropagation 

from the target model to the generator for GAN-based approaches like [10], and hinders the ability to solve 

the gradient difference minimization problem in the case of the attack by Zhu et al. [7]. We conclude that 

denying the attacker access to the first layer of the model appears to be sufficient in preventing these specific 

types of model inversion attack, thus no experimental assessment is needed in this case. However, we 

refrain from making a general claim, as there might still be potential attacks that can circumvent this 

limitation and leave this as future research direction. 

 

Property Inference. Due to the lack of a clear understanding of the underlying causes of property inference 

leakage, it is challenging to predict how such attacks will scale in the grey-box setting. The general idea is 

that the less gradients are exposed to the attacker, the less information is available for inference. However, 

it remains unclear whether specific types of layers (e.g., convolutional or fully-connected) or their positions 

in the model contribute to higher or lower information leakage. 

 

To assess this category of attacks in the grey-box setting, we build upon the white-box property inference 

attack proposed by Melis et al. [13] and adapt it to target only a subset of the gradients. This attack works 

in batches, aiming to determine whether a batch of data points enjoys the target property or not. In our 

variant of the attack, we feed to the attack model only the gradients computed with respect to parameters in 

the exposed layers. 

 

We conduct the assessment on two datasets: Labeled Faces in the Wild (LFW) and EMNIST letters. For 

the LFW dataset we train a CNN model following the architecture provided in [13], with 3 convolutional 

and 2 fully connected layers, using gender as main classification task, and race:black as inference task, 

which has been reported to yield the highest attack rate. While for the EMNIST letter dataset, we train a 

custom MLP model with 3 layers, using the standard 26 letters classification as the main task, and the letter 

case (upper or lower) as the inference task. The gradients of the exposed layers are fed to a Random Forest 

classifier with 50 trees, and the attack accuracy is averaged over multiple instances of the attack model. For 

both datasets, we use batches of size 32, which are balanced with respect to the inference property, resulting 

in an attack accuracy baseline of 50%. 

 

For the CNN model trained on LFW, we did not find any specific patterns indicating whether some layers 

are more or less susceptible to inference than others. The attack exhibited significant variability when 
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conducting multiple iterations of training the target model and conducting repeated testing. In Table 4, we 

report the attack accuracy layer-wise for multiple attempts of the experiment, revealing no consistent 

vulnerability or resistance of any layer across the runs. On the other hand, for the MLP model trained on 

the EMNIST letters dataset, the attack did not achieve accuracy significantly above the baseline, regardless 

of the choice of the layers to attack (including combinations of multiple layers). 

 
Table 4: Property inference attack by Melis et al. (2019) against 5-layer CNN trained on the LFW dataset. The 

attack accuracy is reported per layer, demonstrating high variability across multiple training attempts of the 

same target model 

 
 

Mitigation for the Exposed Layers. While encryption can prevent attackers from directly targeting the 

most vulnerable layers of a model, there remains a risk of information leakage from exposed layers, as 

shown above. Mitigating this potential leakage is out of the scope of this work, but we propose a few ideas 

as follows. Incorporating differential privacy into the exposed layers of the model would provide a 

theoretical-level privacy guarantee, at the cost of introducing an accuracy element in the trade-off. We 

describe a possible implementation of DP to our solution in Section 6.3, where we show how to adapt the 

approach by Shokri and Shmatikov [14] to partially encrypted models. Additionally, allowing for larger 

encryption error on the secret layers by reducing the precision of the FHE scheme. This error would 

propagate to the exposed layers during backpropagation, inducing a DP-like effect. Finally, secure 

aggregation [28] could be used to conceal the individual model updates corresponding to the exposed layers 

in case of a corrupted central server. 

 

6.2.5 Trade-Off between Privacy and Efficiency 

The more layers we encrypt, the higher the privacy, as less parameters are available to a potential adversary. 

However, encrypting more layers also leads to lower performance due to the overhead introduced by 

homomorphic evaluations and distributed bootstrapping. Thus, there is a trade-off between privacy and 

efficiency when deciding how many and which layers to encrypt in a model. The optimal choice depends 

on the specific use case, and in particular on the types of attacks one wants to protect the model from, and 

the desired balance between privacy and performance. In Figure 4, we represent this trade-off, using 

membership inference accuracy as the metric for privacy leakage. 

 

 
Figure 4: Trade-off between privacy and efficiency for the MNIST dense neural network, where the privacy is 

measured by the membership inference attack by Nasr et al. (2019) on gradients, assuming attacker corrupted 

2 out of 3 parties 
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Each point on the plot represents a particular configuration of our approach, for different choices of ℒ𝑆. The 

optimum point of the trade-off occurs when both the leakage and the training time are minimized (i.e., at 

the origin point of the chart). 

 

6.2.5.1 Comparison with Prior Work 

The flexibility of our approach allows the user to sacrifice some privacy in order to gain training 

performance in terms of computation and communication time compared to fully encrypted solution like 

SPINDLE [33] or POSEIDON [20]. At the same time, it provides higher privacy levels than training 

entirely in plaintext, without compromising significant accuracy. Note that setting 𝑇 = 0 corresponds to 

the original POSEIDON idea resulting in a fully encrypted model. 

 

For the very specific case presented in Figure 4, encrypting only the last layer (𝑇⁡ = ⁡2) provides a good 

trade-off. It offers a membership leakage very close to a random guess (54.17%, a 5.6 times reduction from 

the fully plaintext solution’s 73.21%, relative to the random guess baseline), while reducing the training 

time with respect to the fully encrypted solution by a factor of 3.1. Assuming the adversary does not possess 

the target label, the leakage reduction factor increases to 17.8. The advantage provided by our solution may 

become even more evident for models with deeper architectures [52, 53, 54], particularly in settings with 

constrained communication networks. 

 

6.3 Integration with Differential Privacy 

To mitigate the leakage from the exposed layers additional privacy-enhancing techniques can be employed, 

such as differential privacy [1]. Applying DP to the parameters or gradients of exposed layers would provide 

a theoretical privacy guarantee to our solution, albeit introducing an additional trade-off between privacy 

and accuracy. By applying noise only on the exposed layers, rather than the entire model, our approach can 

achieve a higher level of privacy for the same privacy budget compared to standard FL solutions with 

differential privacy [14, 19, 55, 56]. 

 

We adapt the approach of Shokri and Shmatikov [14], which uses the sparse vector technique [57, 58] to 

privately upload a small, perturbed subset of the gradients to the global model. Given a privacy budget 𝜖 

per epoch allocated to each training party 𝑃𝑖, we split this budget among the exposed parameters, and use 

Laplacian mechanism to add noise to the corresponding gradient value. The sensitivity of the training 

mechanism is estimated by clipping the gradient values within the range [−𝛾, 𝛾], resulting in a sensitivity 

of 2𝛾. The clipping range value should be independent of the specific training dataset, to avoid leaking 

sensitive information. We suggest setting it by calculating the median of the unclipped gradients over the 

course of training, as proposed in [18]. 

 

For each value 𝑔 in ∇𝑤𝑗 for 𝐿𝑗 ∈ ℒ𝐸, random Laplacian noise 𝑟𝑔 ∼ Lap(2𝑐𝛾 𝜖⁄ ) is generated, where 𝛾𝑔 is 

the estimated clipping bound for 𝑔, and 𝑐 is the total number of exposed gradients 𝑐 =
∑ (|∇𝑤𝑗| + |∇𝑏𝑗|)𝐿𝑗∈ℒ𝐸 . The gradient 𝑔 is then clipped within [−𝛾𝑔, 𝛾𝑔], and the noise 𝑟𝑔 is added before 

uploading to the central server. A similar process can be followed for the exposed bias gradients. These 

operations are performed on the aggregated gradient obtained after several local iterations, each computed 

over a randomly sampled batch. Applying noise to each computed gradients could be done as well, and the 

overall effect over batches can be analysed using the privacy amplification theorem [59, 60]. More 

advanced techniques, such as privacy accountants [19, 18], can also be potentially adapted to work in our 

partially encrypted model solution. 

 

6.4 Further Optimization: Delayed Encryption 

In this section, we exploit the fact that some attacks start to be effective only after some number of training 

epochs to further optimize our solution. 

 

Attacking Intermediate Models: Membership Inference. A model acquires more information about its 

training data the more training iterations it undergoes, thus leaking progressively more information as it 

approaches the end of the training process. To assess how the membership leakage changes across the 
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epochs, we use the attack by Nasr et al. [2] against the intermediate models. Specifically, in Figure 5, we 

present the attack accuracy against the model trained on the MNIST dataset. We carry out the attack at 10-

epoch intervals, targeting each layer within the model independently. Our experiment reveals a consistent 

upward trend in attack accuracy with respect to the number of training epochs, especially for the later layers. 

Notably, a significant deviation from the attack baseline appears only from epoch 90. 

 

 
Figure 5: Layer-wise accuracy of the membership inference attack by Nasr et al. (2019) against intermediate 

models for the MNIST classification task. The model leaks more membership information as the number of 

training epochs grows. This behaviour is particularly evident for the output layer 

Attacking Intermediate Models: Model Inversion. We also evaluated the effectiveness of model 

inversion attacks against intermediate training models. Similarly to membership inference, our experiments 

reveal that as the number of training epochs increases, the reconstructed class representative becomes more 

and more visually similar to the corresponding training examples. In Figure 6, we display the reconstruction 

of a face from the AT&T dataset performed during different training epochs. We use the model inversion 

attack by Fredrikson et al. [9]. Following their work, we train an MLP with one hidden layer with 3000 

nodes, sigmoid activation function, and a SoftMax output layer, using the SGD optimizer and cross-entropy 

loss function. The reconstruction becomes more and more clear as the training proceeds. However, we 

notice that the attack works already well even after just a few epochs. This happens since a model inversion 

attack works well as soon as the model is generalising well enough. 
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Figure 6: Reconstruction of a face in the AT&T dataset performed at different training epochs. The first picture 

is a class representative, while the number at the top-left of each picture denotes the corresponding training 

epoch of the model 

 

Attacking Intermediate Models: Property Inference. We also assessed how property inference varies 

across training epochs. However, the experiments were inconclusive as no consistent trend emerged from 

the attack accuracy. In Figure 7, we report the attack accuracy of the property inference attack by Melis et 

al. [13] against intermediate training models for the LFW classification task. The attack is performed every 

10 training epochs, and it targets each layer of the model individually to get better insights. The model 

exhibits a general upward trend for information leakage as the number of training epochs grows. However, 

this trend is not much consistent, and the leakage is already substantial since the very beginning. 

 

 
Figure 7: Layer-wise accuracy of a property inference attack against intermediate models for the LFW 

classification task 
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Optimization: Delayed Encryption. We can leverage the investigation of privacy attacks on intermediate 

training models to further optimize our solution. An optimization for our solution consists of starting the 

federated learning process fully in plaintext and encrypting (some of) the layers only once the model 

becomes vulnerable. The number of layers to encrypt can be dynamically adjusted during the training 

process. We will discuss this more in detail in Section 6.5. 

 

6.5 Hyperparameters Choice 

In this section we suggest a procedure to choose which layers to encrypt in a FL setting. Since the privacy 

leakage of a model strongly depends on the training dataset, there is no general-purpose guideline on how 

many and which layers to encrypt. A practical approach we propose consists of getting a lower bound 

estimate on the privacy leakage through an assessment on the local training data. To do so, the parties can 

train a dummy model on their own private datasets and perform a privacy assessment locally. Instead of 

exploring all possible combinations of private-exposed layers, the parties can rely on the insights discussed 

in Section 6.2.4 to determine which configurations are the most meaningful to assess. Since each local 

dataset is a subset of the joint dataset, the privacy leakage assessed locally provides an empirical worst-

case for the privacy leakage of the joint model. From the efficiency point of view, the parties can use the 

insights from Section 6.2.3, by also taking into account their specific computation and communication 

constraints (e.g., bandwidth and network delay between the nodes). Finally, the parties can collectively 

agree on which layers to encrypt by leveraging MPC techniques, avoiding leaking potential information 

about their local dataset. Depending on the specific situation and requirements, the parties can perform a 

majority vote or compute the union of the local choices to reach a consensus on the layers to be encrypted. 

 

We provide an example of how to agree on ℒ𝑆 for the optimized version of our solution in case membership 

inference attacks are considered. Each party 𝑃𝑖 trains a model locally and assess it against the considered 

privacy attack across the training epochs, as in Figure 5. Then, they select a privacy threshold 𝜏𝑖 ∈ [0.5, 1], 
which fixes an upper bound on the model leakage they are willing to allow. The party then proceeds to 

compute their preferred choice for the layers to encrypt ℒ𝑆
𝑖,𝑔

 for each epoch 𝑔 = 1,… , 𝐸𝑔 as the minimum 

set of layers that keeps the attack accuracy under 𝜏𝑖. For consistency reasons, if a layer 𝐿𝑗 is included in 

ℒ𝑆
𝑖,𝑔

, then all subsequent layers 𝐿𝑘 for 𝑘 > 𝑗 should be included as well. Moreover, the layer should be 

included in all the future epochs as well, that is 𝐿𝑗 ∈ ℒ𝑆
𝑖,𝑔′

 for all 𝑔′ > 𝑔. Then, the parties use MPC to 

compute ℒ𝑆
𝑔

 as the union of the ℒ𝑆
𝑖,𝑔

 for each 𝑔 = 1,… , 𝐸𝑔. 
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7. Conclusions and Next Steps 

In this deliverable, we presented a flexible solution for privacy-preserving training of neural networks in a 

federated setting such as RE-SAMPLE. Our system allows users to trade-off little privacy for higher 

training performance, by selectively encrypting specific portions of the model using a multiparty FHE 

scheme. Through an investigation of various privacy attacks in the grey-box setting, where the adversary’s 

access is limited to the unencrypted layers of the model, we determine the layers that tend to leak more 

information and, consequently, identify which layers are advisable to encrypt. Our findings indicate that 

encrypting the last layers is particularly effective to mitigate membership inference attacks, while 

encrypting the first layers helps preventing model inversion attacks. 

 

The next steps consist of: 

1. implementing the prototype within the RE-SAMPLE framework in D4.5, where we will detail the 

API calls and the interactions among the hospitals and the coordinating server, and 

2. selecting the hyperparameters of the solution in D4.6 by assessing the solution on the actual RE-

SAMPLE data, to choose the model architecture, the subset of layers to encrypt, and the encryption 

schedule for the delayed encryption. 

 

Due to the high costs associated with FHE, a major challenge will be making sure that the runtime 

performance of the implementation meets practical deployment thresholds. The hyperparameters selection 

will play a key role in this, namely in finding a sweet spot in the efficiency-privacy trade-off that achieves 

a requisite operational efficiency level while safeguarding patient privacy. 
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