

REal-time data monitoring for Shared, Adaptive, Multi-domain and Personalised

prediction and decision making for Long-term Pulmonary care Ecosystems

D3.2: Privacy-preserving designs of ML

Dissemination level: PU

Document type: Report

Version: 1.0

Date: 29.04.2024

This project has received funding from the European Union’s Horizon 2020 research and

innovation programme under Grant Agreement No 965315. This result reflects only the

author's view and the European Commission is not responsible for any use that may be

made of the information it contains.

D3.2: Privacy-Preserving Design of ML Page 2 of 42

Document Details

Reference No. 965315

Project title RE-SAMPLE - REal-time data monitoring for Shared, Adaptive, Multi-domain

and Personalised prediction and decision making for Long-term Pulmonary care

Ecosystems

Title of deliverable Privacy-Preserving Design of ML

Due date deliverable 30/04/2024

Work Package WP3

Document type Report

Dissemination Level PU: Public

Approved by Coordinator

Author(s) Florian Hahn (UT), Federico Mazzone (UT)

Reviewer(s) César Mediavilla Martínez (ATOS); Costas Lambrinoudakis, Christos Kalloniatis

and Thrasyvoulos Giannakopoulos (UPRC)

Total No. of pages 42

Partners

Participant No Participant organisation name (country) Participant

abbreviation

1 (Coordinator) University of Twente (NL) UT

2 Foundation Medisch Spectrum Twente (NL) MST

3 University of Piraeus Research Center (GR) UPRC

4 Foundation Tartu University Hospital (EE) TUK

5 Foundation University Polyclinic Agostino Gemelli IRCCS (IT) GEM

6 European Hospital and Healthcare Federation (BE) HOPE

7 German Research Center for Artificial Intelligence GMBH (DE) DFKI

8 ATOS IT Solutions and Services Iberia SL (ES) ATOS

9 Roessingh Research and Development BV (NL) RRD

10 Innovation Sprint (BE) iSPRINT

D3.2: Privacy-Preserving Design of ML Page 3 of 42

Abstract

This deliverable describes the privacy risks for the federated training of a predictive model in RE-SAMPLE

and presents a privacy-preserving solution to this problem. The solution utilises homomorphic encryption

to conceal a subset of the model’s parameters, while allowing the training procedure to proceed obliviously

from potential adversaries. The proposed approach leads to a trade-off between the efficiency of the training

process, in terms of local computations and communication overhead, and the privacy of the training data,

experimentally measured against privacy attacks. The proposed approach is implemented as a prototype

and assessed on public datasets against state-of-the-art privacy attacks.

D3.2: Privacy-Preserving Design of ML Page 4 of 42

Contents

ABSTRACT 3
CONTENTS 4
LIST OF FIGURES 5
LIST OF TABLES 6
SYMBOLS, DEFINITIONS, ABBREVIATIONS, AND ACRONYMS 7
1. INTRODUCTION 8
2. OBJECTIVES 9
3. BACKGROUND 10

3.1 DIFFERENTIAL PRIVACY 10
3.2 MULTIPARTY COMPUTATION 10
3.3 HOMOMORPHIC ENCRYPTION 11
3.4 MULTILAYER PERCEPTRONS (MLPS) 11

4. PRIVACY-PRESERVING MACHINE LEARNING (PPML) 13
4.1 PRIVACY ATTACKS 13

4.1.1 Threat Model 13
4.1.2 Attacker’s Goal 13

4.2 FEDERATED LEARNING (FL) AS A PRIVACY ENHANCING TECHNOLOGY 15
4.2.1 Recap of FL 15
4.2.2 A Privacy Illusion 15
4.2.3 Overview of Available Solutions 16

4.3 THE IMPORTANCE OF PPML FOR RE-SAMPLE 17
5. FEDERATED TRAINING UNDER FULLY HOMOMORPHIC ENCRYPTION (FHE) 18

5.1 CKKS AND MULTIPARTY FHE 18
5.1.1 Homomorphic Properties 18
5.1.2 Multiparty FHE 19

5.2 AVAILABLE SOLUTIONS FOR FL UNDER FHE 20
5.2.1 Performance Limitations 20

6. PROPOSED SOLUTION: PARTIAL ENCRYPTION OF THE MODEL 21
6.1 DESIGN AND WORKFLOW 21

6.1.1 Protocol Description 21
6.2 ASSESSMENT ON PUBLIC DATASETS 24

6.2.1 Experimental Setup 24
6.2.2 Datasets and Models Description 25
6.2.3 Runtime and Communication Performance 26
6.2.4 Privacy Analysis 28
6.2.5 Trade-Off between Privacy and Efficiency 32

6.3 INTEGRATION WITH DIFFERENTIAL PRIVACY 33
6.4 FURTHER OPTIMIZATION: DELAYED ENCRYPTION 33
6.5 HYPERPARAMETERS CHOICE 36

7. CONCLUSIONS AND NEXT STEPS 37
REFERENCES 38

D3.2: Privacy-Preserving Design of ML Page 5 of 42

List of Figures

Figure 1: Diagram representation of the approach: encryption of a hidden layer on the left-hand side,

encryption of the output layer on the right-hand side ... 21
Figure 2: Computation vs. communication time for one training pass in our approach on MNIST for a 3-

layer MLP, with varying levels of encryption: full model encryption (T = 0), last two layers (T = 1), last

layer (T = 2), and none (T = 3) ... 27
Figure 3: Layer-wise accuracy of the white-box membership inference attack by Nasr et al. (2019) against

different datasets and models, exploiting both the layer's output and gradient .. 31
Figure 4: Trade-off between privacy and efficiency for the MNIST dense neural network, where the privacy

is measured by the membership inference attack by Nasr et al. (2019) on gradients, assuming attacker

corrupted 2 out of 3 parties ... 32
Figure 5: Layer-wise accuracy of the membership inference attack by Nasr et al. (2019) against intermediate

models for the MNIST classification task. The model leaks more membership information as the number

of training epochs grows. This behaviour is particularly evident for the output layer 34
Figure 6: Reconstruction of a face in the AT&T dataset performed at different training epochs. The first

picture is a class representative, while the number at the top-left of each picture denotes the corresponding

training epoch of the model .. 35
Figure 7: Layer-wise accuracy of a property inference attack against intermediate models for the LFW

classification task .. 35

D3.2: Privacy-Preserving Design of ML Page 6 of 42

List of Tables

Table 1: Execution time and communication size of our approach on the MNIST dataset for a 3-layer MLP,

with varying levels of layer encryption: none (T = 3), last layer (T = 2), last two layers (T = 1), and full

model encryption (T = 0) .. 27
Table 2: Microbenchmarks of different FHE functionalities, for 3 parties, 5-bit integral precision, 55-bit

decimal precision, 8-level moduli tower, and 215 cyclotomic ring degree. The “one layer” functionality

refers to a fully connected layer, while the “one pass” functionality refers to an entire pass (forward or

backward) of the model under encryption .. 28
Table 3: Description of attack capabilities in different threat models, for different privacy attacks. For a

description of the active variant of the attacks, we refer to the corresponding works 29
Table 4: Property inference attack by Melis et al. (2019) against 5-layer CNN trained on the LFW dataset.

The attack accuracy is reported per layer, demonstrating high variability across multiple training attempts

of the same target model ... 32

D3.2: Privacy-Preserving Design of ML Page 7 of 42

Symbols, definitions, abbreviations, and acronyms

API Application Programming Interface

CCC Complex Chronic Condition

CKKS Chen, Kim, Kim, Song

CNN Convolutional Neural Network

D Deliverable

DP Differential Privacy

FHE Fully Homomorphic Encryption

FL Federated Learning

HE Homomorphic Encryption

MSE Mean Squared Error

MHE Multiparty Homomorphic Encryption

ML Machine Learning

MPC Multiparty Computation

PPML Privacy-Preserving Machine Learning

SIMD Single Instruction, Multiple Data

SGD Stochastic Gradient Descent

SL Split Learning

WP Work Package

D3.2: Privacy-Preserving Design of ML Page 8 of 42

1. Introduction

Deliverable D3.2 “Privacy-preserving designs of ML” is part of WP3 “Personalised prediction and

modelling of CCC exacerbations” and is linked with Task 3.1 “Training of a predictive model” and Task

4.4 “Implementation and experimental evaluation of privacy-preserving machine learning model training

and prediction”.

Specifically, we analyse the privacy risks associated with the use of federated learning to train a joint

predictive model on distributed data. Information about the training data of a model can be retrieved by

having access to its prediction functionality or to the model itself, posing a risk to the privacy of the patients

involved in the RE-SAMPLE project. We show that Federated Learning (FL) alone is not enough to fully

prevent adversaries from carrying out such privacy attacks. Adversaries may attempt to corrupt one or more

pilot sites and try to retrieve information about the other sites’ patients. Defences against this kind of attacks

exist, but they all suffer from downsides (severe utility loss of the model, poor scalability with the number

of training parties in terms of communication overhead, or high computational cost that would made the

training impractical). Here, we propose a new solution which can be flexibly tuned to trade-off privacy for

efficiency, while keeping the utility of the model unaffected.

The output of this deliverable consists of a detailed description of the proposed solution, and a strategy to

select its hyperparameters for the aforementioned trade-off. These outputs will be fed as input to D4.5

“Proof-of-concept privacy-preserving ML and data aggregation” and D4.6 “Report on the final parameter

selection” within the work package WP4.

The deliverable starts by summarising its objectives in Section 2, and by providing some background

notions on privacy-preserving machine learning in Section 3. We use Section 4 to provide the reader with

a basic understanding of the notion of privacy in machine learning, describing different privacy attacks

(membership inference, model inversion, and property inference), and focusing in particular on the

federated setting. We show how current solutions for privacy-preserving federated learning can turn out to

be impractical, focusing on solutions based on encrypting the model in Section 5. These approaches provide

privacy at the cost of training efficiency. In Section 6, we show how we improve on these solutions for

achieving better efficiency at the cost of little privacy loss. Further, we outline the compatibility of our

solution with existing solutions based on differential privacy – as also envisioned in the RE-SAMPLE

project.

D3.2: Privacy-Preserving Design of ML Page 9 of 42

2. Objectives

The objective of this deliverable is to present the privacy-preserving design for the machine learning (ML)

components of the RE-SAMPLE project. It serves as the first part of a series of three deliverables, outlined

as follows:

- D3.2 Privacy-preserving design of ML (this deliverable): Provides an understanding of privacy-

preserving machine learning, privacy concepts, existing risks, related work, and available

mitigations. Describes the proposed solution for private training and inference of ML models in

RE-SAMPLE, including high-level descriptions of algorithms and protocols, privacy evaluation,

security proof, and benchmarking of prototypes on publicly available datasets. Aims to highlight

the threats, the need for the proposed solution, and the advantages and disadvantages in terms of

privacy and utility.

- D4.5: Proof-of-concept privacy-preserving ML and data aggregation: Describes the

implementation of the solution within the RE-SAMPLE framework, detailing the Application

Programming Interface (API) calls and the interactions among the hospitals and the coordinating

server.

- D4.6: Report on the final parameter selection: Focuses on the finalization and optimization of

hyperparameters of the solution within the RE-SAMPLE framework, by finding a suitable trade-

off between privacy and efficiency.

D3.2: Privacy-Preserving Design of ML Page 10 of 42

3. Background

In this section we provide some basic notions and definitions.

3.1 Differential Privacy

Differential Privacy (DP) [1] is a rigorous privacy concept that provides strong guarantees for protecting

individual data when performing statistical analyses. It ensures that the presence or absence of any single

data point in the dataset does not significantly impact the outcome of the analysis, thus safeguarding the

privacy of individuals. The idea is that given a dataset 𝐷 and a statistical mechanism 𝑓 you want to compute

on 𝐷, just enough tailor crafted noise is injected into the dataset or the mechanism to ensure that individual

privacy is preserved while still allowing meaningful analysis to be conducted. Unlike traditional approaches

such as k-anonymity, DP provides privacy guarantees regardless of adversaries' prior knowledge.

The epsilon-delta framework is central to DP. It quantifies privacy guarantees using two parameters:

- epsilon (𝜖), which quantifies the privacy loss incurred by an individual's participation in a dataset,

and

- delta (𝛿), which represents the allowable probability of a privacy breach.

Mathematically, a statistical mechanism 𝑓 is (𝜖, 𝛿)-differentially private if, for all possible pairs of

neighbouring datasets 𝐷 and 𝐷′ (i.e., datasets that differ by the presence or absence of a single individual's

data point), and for all possible outcomes 𝑆 of the computation:

Pr[𝑓(𝐷) ∈ 𝑆] ≤ 𝑒𝜖 Pr[𝑓(𝐷′) ∈ 𝑆] + 𝛿

In simpler terms, this formula states that the probability of obtaining a certain output remains relatively

stable regardless of whether a specific individual's data is included or excluded.

Choosing an appropriate 𝜖 value is crucial and challenging in practice. A smaller 𝜖 implies stronger privacy

guarantees, but it may also lead to significant noise being added to the computation, potentially affecting

its accuracy. Conversely, a larger 𝜖 allows for more accurate computations but provides weaker privacy

protection. The challenge lies in finding the right balance between privacy and utility. Empirical evaluations

and sensitivity analyses are often conducted to iteratively adjust 𝜖 based on the specific requirements and

constraints of the application.

3.2 Multiparty Computation

Multiparty Computation (MPC) is a cryptographic technique that enables multiple parties 𝑃1, … , 𝑃𝑁 to

jointly compute a function 𝑓 over their inputs 𝑥1, … , 𝑥𝑁 while keeping those inputs private. Essentially,

MPC allows computation on sensitive data without revealing the data itself, ensuring privacy and

confidentiality in collaborative settings. It relies on cryptographic protocols to distribute the computation

across multiple parties in such a way that each party cannot learn more than what they can infer from their

own inputs and the result of the computation. This is achieved through a combination of encryption, secret-

sharing schemes, and secure computation protocols.

The MPC framework proves the security of its protocols depending on the view and capabilities a potential

adversary is assumed to have. The adversary is usually supposed to be able to corrupt up to 𝑡 parties, for a

given 𝑡 < 𝑁, and obtain their view on the protocol, i.e., their internal computations and the messages they

exchange with the other parties. If the adversary is also allowed to tamper with the protocol, that is to force

the corrupted parties to deviate from the given instructions and send arbitrarily crafted messages, then we

are modelling a malicious or active adversary. Otherwise, we are modelling a semi-honest or passive

adversary.

Theoretically, it is possible to create a multiparty protocol to securely compute any given computable

function 𝑓. However, the challenge is to come up with a protocol that is efficient. MPC protocols turn out

to be expensive to run, mostly in terms of communication complexity. Their communication overhead does

not usually scale well with an increasing number of participants (i.e., 𝑁). Especially in the malicious setting,

where MPC protocols need to incorporate heavy cryptographic techniques such as zero-knowledge proofs

and commitment schemes to ensure security against active adversaries.

D3.2: Privacy-Preserving Design of ML Page 11 of 42

3.3 Homomorphic Encryption

Homomorphic Encryption (HE) is a type of encryption that allows performing computations on encrypted

data without decrypting it first. It enables different kind of operations to be executed directly on ciphertexts,

resulting in encrypted results that correspond to the outcomes of the same operations on the plaintext data.

This property allows for computation on sensitive information without exposing it. More formally, there is

an evaluation functionality Eval such that given an 𝑛-ary function 𝑓 and messages 𝑚1, … ,𝑚𝑛

Dec(Eval(𝑓, 𝐸𝑛𝑐(𝑚1) , … , 𝐸𝑛𝑐(𝑚𝑛))) = 𝑓(𝑚1, … ,𝑚𝑛)
where Enc⁡and Dec⁡are the encryption and decryption functionality for a given key, respectively.

HE can be used to outsource computations to an untrusted third party by providing it with the encryption

of the input of these computations. The third party will then apply the homomorphic evaluation on the

encrypted input to obliviously compute the encrypted output, which is then returned to the original querier

who can decrypt it. In this scenario, the querier is the one setting up the crypto scheme, generating the

encryption and decryption keys, in addition to an evaluation key, which is needed by the third party to

perform the homomorphic evaluation. Using these delegation-based computations is quite challenging in

practice for mainly two reasons. The first one is the high computational cost of performing operations under

encryption. The second one is that not all functions are (directly) supported for homomorphic evaluation.

HE schemes are classified depending on what kind of functions (usually arithmetic circuits composed of

additions and multiplications, or Boolean circuits composed of ANDs and XORs) they support for the

homomorphic evaluation.

- Partial Homomorphic Encryption schemes allow for circuits of any depth but consisting of only

one kind of operation (either only additions/XORs or only multiplications/ANDs).

- Somewhat Homomorphic Encryption schemes support any number of one operation, and a limited

number of the other operation (this bound is fixed by the scheme).

- Levelled Homomorphic Encryption schemes support both operations but up to a given number of

times (this bound can be modified within the scheme, usually at the cost of bigger ciphertexts and

higher computational overhead).

- Fully Homomorphic Encryption (FHE) schemes allow for any number of both operations. FHE

schemes are very useful due to their flexibility, but also very expensive from a computational point

of view.

FHE schemes are often built upon Levelled schemes, enhanced with a bootstrapping functionality.

Bootstrapping enables the “refreshing” of ciphertexts once the number of allowed operations on them is

over. This process involves homomorphically evaluating an approximation of the decryption circuit on the

ciphertext to be refreshed. Through this mechanism, the ciphertext is decrypted and re-encrypted in an

oblivious manner, renewing its usability for further computations.

3.4 Multilayer Perceptrons (MLPs)

Multilayer Perceptrons (MLPs), also known as fully-connected or dense networks, are the simplest kind of

feedforward neural networks, where each neuron in one layer is connected to every neuron in the next layer.

Due to their structure, the parameters of these models can be represented by matrices, and in some cases,

an additive bias parameter is included for added flexibility. Given an MLP with 𝐿 layers and 𝑖 ∈ {1,… , 𝐿},
we denote by 𝑤𝑖 and 𝑏𝑖 the weight matrix and bias vector between layer 𝑖 − 1 and layer 𝑖, respectively. We

denote by 𝑙𝑖 the output of layer 𝑖, that is 𝑙𝑖 = 𝜙𝑖(𝑙𝑖−1𝑤𝑖 + 𝑏𝑖), where 𝑙0 = 𝑥 is the input of the model and

𝜙𝑖 is the so-called activation function used to incorporate non-linearity in the model. And we denote the

intermediate linear application output as 𝑢𝑖 = 𝑙𝑖−1𝑤𝑖 + 𝑏𝑖. With a little abuse of notation, we will

sometimes refer to the weight and bias 𝑤𝑖, 𝑏𝑖 as to the parameters of the layer they allow to transition to,

namely layer 𝑖. The model is then a parameterized function 𝑓(𝑥;𝑤𝑖, 𝑏𝑖), whose output is 𝑙𝐿.

The model is trained by minimising the empirical risk with respect to a given loss function. For supervised

learning, we assume to have a training dataset 𝐷 of labeled examples (𝑥, 𝑦), where 𝑥 is the feature vector

and 𝑦 is the ground-truth label. Given a model 𝑓(𝑥;𝑤𝑖, 𝑏𝑖), the goal is to optimize the model’s parameters

D3.2: Privacy-Preserving Design of ML Page 12 of 42

by minimising some loss function 𝐿(𝑓(𝑥), 𝑦). This is usually done through Gradient Descent (GD)

techniques, namely computing the gradient of the loss function and moving towards the negative direction

of the gradient. To estimate the gradient of 𝐿 with respect to the model parameters 𝑤𝑖, 𝑏𝑖, feedforward and

backpropagation are used. During feedforward, an input data 𝑥 is propagated layer by layer through the

network, computing all the 𝑢𝑖 and 𝑙𝑖. The output prediction 𝑙𝐿 is then compared to the actual label 𝑦 using

the chosen loss function 𝐿 to compute the loss value. The backpropagation algorithm then calculates the

gradients of the loss function with respect to the model’s parameters. When the loss function 𝐿, the model𝑓,

and the example (𝑥, 𝑦) are clear from the context, we will write ∇𝑤𝑖 and ∇𝑏𝑖 in place of ∇𝑤𝑖
𝐿(𝑓(𝑥), 𝑦) and

∇𝑏𝑖𝐿(𝑓(𝑥), 𝑦), respectively. Below is a schematic representation of the computations performed during one

step of the training process.

This step is repeated for a batch of examples 𝐵, and the resulting gradients are averaged to get a better

approximation of the actual loss gradient on the real population. The parameters are then updated following

the negative direction of the gradient, by a step size proportional to a learning rate 𝜂 > 0:

𝑤𝑖 ← 𝑤𝑖 −
𝜂

|𝐵|
∑ ∇𝑤𝑖

𝐿(𝑓(𝑥), 𝑦)

(𝑥,𝑦)∈𝐵

𝑏𝑖 ← 𝑏𝑖 −
𝜂

|𝐵|
∑ ∇𝑏𝑖𝐿(𝑓(𝑥), 𝑦)

(𝑥,𝑦)∈𝐵

.

This iterative process of feeding the data forward, computing the loss, and updating the model’s parameters

continues until convergence, or for a fixed number of iterations.

D3.2: Privacy-Preserving Design of ML Page 13 of 42

4. Privacy-Preserving Machine Learning (PPML)

Privacy-preserving machine learning (PPML) is the branch of ML that aims to develop techniques and

methodologies to perform model training and inference while safeguarding the privacy of the training data

and/or of the model itself. Such techniques should mitigate the danger coming from privacy attacks, while

keeping the utility of the model and the efficiency of the training and inference as high as possible.

4.1 Privacy Attacks

In general, a privacy attack is a technique designed to extract information about the data that a particular

model has been trained on. In this section, we provide a high-level description and classification of privacy

attacks based on the information available to the adversary and its goal.

4.1.1 Threat Model

In this section, we briefly discuss the threat model under which PPML works and the kind of adversaries it

considers [2].

4.1.1.1 Black-Box vs. White-Box

PPML literature classifies privacy attacks depending on the adversary's view of the model, making a

distinction between black-box attacks and white-box attacks. In black-box attacks, the adversary can only

access the model's output for arbitrarily chosen inputs but lacks information about model parameters. While

in white-box attacks, the adversary has full access to the model's architecture, parameters, and

hyperparameters used during training. This enables them to compute any function of the model parameters

and any chosen input, including intermediate computations of the feedforward pass, i.e. output of

intermediate layers. For labelled input, the adversary can hence compute the corresponding loss and the

gradients for each layer.

4.1.1.2 Active vs. Passive

PPML literature also distinguishes between passive and active behaviour for privacy attacks. A passive

adversary can only observe the legitimate model updates and attempt to infer information by performing

inference on the model, without changing anything in the local or global collaborative training procedure.

In contrast, an active adversary influences the target model during training in order to coerce the data owners

into unintentionally releasing more information through the model. The active adversary's actions may

include choosing specific artificially crafted inputs (not originally included in the training dataset of the

corrupted training client, or not drawn from the population distribution) for the training procedure, or

performing gradient ascent on specific inputs.

4.1.1.3 Supervised vs. Unsupervised

When it comes to inferring information about the training dataset of a given model, it is also possible to

distinguish between supervised and unsupervised attacks. In supervised attacks we assume the adversary

already knows a portion of the training dataset. On the other hand, in unsupervised attacks, there is no such

assumption, and the adversary is not assumed to possess any data point belonging to the training dataset.

4.1.1.4 Central vs. Distributed

Finally, privacy attacks can also be classified depending on whether they target model trained by a single

party or by a federation composed of multiple data owners. We will describe the latter scenario in more

detail in Section 4.2.

4.1.2 Attacker’s Goal

Privacy attacks are typically categorized based on the specific type of information they aim to extract.

Following the taxonomy provided by Rigaki et al. in their survey [3], we can classify privacy attacks into

three categories: membership inference, model inversion, and property inference. For each category we

describe the adversary’s goal, the causes of the privacy leakage, some available mitigations, and an actual

state-of-the-art attack from each given category.

D3.2: Privacy-Preserving Design of ML Page 14 of 42

4.1.2.1 Membership Inference

Membership inference attacks aim to determine whether or not a given data point was part of the training

data set. These attacks exploit the intrinsic difference in the model’s behaviour when performing predictions

over known training data versus unseen data. Membership inference attacks reveal how much a model

retains from its training data, helping to gauge the potential effectiveness of other privacy attacks such as

data reconstruction, but they can also pose significant privacy risks on their own. For instance, consider

being able to determine whether a specific patient's data was used to model the efficacy of a particular

cancer treatment.

Since the introduction of the first membership inference attack by Shokri et al. [4], numerous studies have

investigated the underlying causes of membership leakage in ML models. The primary contributing factor

to membership leakage appears to be model overfitting or poor generalization [4, 5]. Several factors can

exacerbate this issue, including a limited number of training samples [4, 6], high model complexity leading

to overparameterisation [2], and high feature dimensionality [4].

A state-of-the-art attack in the membership inference category is the white-box attack by Nasr et al. [2].

Like other lines of work, Nasr et al.’s attack treats membership inference as a binary classification task, and

it trains a machine learning model to accomplish this task. We describe the supervised version of their

attack, in which the adversary is assumed to know a portion of the private training dataset and uses this

knowledge to perform supervised training of the attack model. Given a target data point, the attacker

performs a feedforward pass of the model over it, computing hidden layer outputs, loss, and subsequent

backpropagation to calculate gradients for each layer.

These computed values, along with the true label, serve as input features for the attack model. The attack

model suggested by the authors consists of a fully connected or convolutional component for each

aforementioned value. Those components are then all connected to another fully connected component that

produces a scalar output representing the membership probability of the input.

4.1.2.2 Model Inversion

Model inversion, also known as reconstruction attack, aims to recreate training samples and, in some cases,

their associated labels. There are two main types of model inversion attacks: those that aim to reconstruct

actual training samples [7, 8] and those that aim to craft a class representative [9, 10]. The latter type is

particularly useful when all samples associated with a given label are similar, such as faces of the same

person, or when the attacker has no prior knowledge about what a specific label encodes.

The effectiveness of model inversion attacks has been shown to increase with the target model's level of

overfitting [5] and its predictive power, as measured by loss minimization [11]. To mitigate these attacks,

one suggested approach is to partially prune the gradients before updating the model [7].

One of the first model inversion attacks on neural networks was developed by Fredrikson et al. [9]. The

attacker crafts a dummy input for the target model and then uses gradient descent to optimize the dummy

input. The high-level idea is that, instead of fitting the model parameters to the input, the attacker computes

the gradient of the loss function with respect to the input and fits the latter to the model parameters. In

contrast, other model inversion attacks use generative models to construct class representative. For instance,

Hitaj et al. [10] proposed a method based on Generative Adversarial Networks (GANs). In this approach,

the attacker designs a generator 𝐺 with the purpose of producing examples for a specific class 𝑦, using the

target model itself as the discriminator. The generator takes noise 𝑥𝜖 as input and generates 𝑥𝑦 = 𝐺(𝑥𝜖),

intended to represent class 𝑦. The parameters of 𝐺, denoted as 𝜃𝐺, are optimized to minimize 𝐿(𝑓(𝑥𝑦), 𝑦),

which indicates how confidently the model classifies 𝑥𝑦 as 𝑦. Another model inversion attack by Zhu et al.

[7] assumes that the attacker has access to the gradients ∇𝐿(𝑓(𝑥), 𝑦) computed by a training party for a data

point (𝑥, 𝑦), e.g., in a collaborative learning setting when the attacker corrupts the supporting server (with

no secure aggregation ongoing) or if the attacker corrupts all parties but the target one. The attacker

initialises a dummy data point (𝑥′, 𝑦′), computes the corresponding gradients ∇𝐿(𝑓(𝑥′), 𝑦′), and minimises

the distance between these dummy gradients and the original gradients, which in turn brings the dummy

input (𝑥′, 𝑦′) closer to the original (𝑥, 𝑦). To solve the minimization problem, the attacker differentiates
|∇𝐿(𝑓(𝑥′), 𝑦′) − ∇𝐿(𝑓(𝑥), 𝑦)| with respect to (𝑥′, 𝑦′) and uses GD to find a local minimum (𝑥′, 𝑦′).

D3.2: Privacy-Preserving Design of ML Page 15 of 42

4.1.2.3 Property Inference

Property inference attacks aim to extract properties about the training samples that are uncorrelated to the

learning task at hand. For example, in a face recognition task, where the goal is gender classification, the

attacker might try to infer whether people in the training dataset are wearing sunglasses. Similarly, for a

model designed for handwriting recognition, the attacker may attempt to determine the font used to write

the messages (e.g., cursive or block letters).

The underlying conditions and factors that enable property inference attacks are not yet fully understood

[3]. It remains unclear what specific characteristics or vulnerabilities in a model make it susceptible to such

attacks. Surprisingly, these attacks have shown effectiveness even on well-generalized models, and the

relationship between their efficacy and overfitting is still unclear [12, 13]. It has been suggested that sharing

only a small portion of the gradients, as in the collaborative approach by Shokri and Shmatikov [14], may

contribute to mitigate these attacks [13].

To carry out a property inference attack, the adversary needs access to samples both with and without the

property they want to infer. They calculate the gradients of the target model for both types of samples and

trains a binary classifier to distinguish between the gradients of samples with the property of inference and

samples without it. In collaborative learning, the adversary can obtain the gradients of honest parties by

computing the difference between two subsequent model updates. However, if the adversary only has

access to aggregated data from other parties, the attack may become less effective as the number of honest

parties increases.

4.2 Federated Learning (FL) as a Privacy Enhancing Technology

FL is a collaborative learning approach where multiple data-owning clients jointly train a common model

while keeping their data decentralized. Although developed as a privacy-preserving solution, recent lines

of work show that this approach indirectly leaks information about the model’s training data.

4.2.1 Recap of FL

The demand for more complex and accurate machine learning models in fields like image recognition and

natural language processing has highlighted the need for extensive training data [15]. As a result,

collaboration among data-owning entities has become crucial to leverage larger and more diverse datasets

and enhance model performance. However, this collaborative approach raises privacy concerns, as sharing

raw data can expose sensitive information, potentially violating privacy regulations and raising

confidentiality concerns. To address this issue, collaborative learning solutions, like FL [16] and Split

Learning (SL) [17], have been proposed. Those methods aim to protect privacy by enabling the training of

a joint model without directly outsourcing the raw data.

Originally, Shokri and Shmatikov [14] introduced an FL scheme for neural networks where clients

independently train local models on their datasets, while sharing portions of their model parameters with a

global model hosted by a supporting server. The training process is asynchronous, with each client

repeatedly downloading portions of the global model parameters, updating its local model, and then

uploading portions of the gradients to the global model. However, a more widely adopted approach for FL

is Federated Averaging (FedAvg), as proposed by McMahan et al. [16]. In FedAvg, the training process

occurs in synchronous rounds. In each round, a subset of clients is selected to participate. These clients

perform a local training step on their own data, updating their model parameters. These locally trained

models are then sent to the central server, where they are averaged together to obtain a new global model.

The aggregated global model is then distributed back to all participating clients.

4.2.2 A Privacy Illusion

FL was designed as a privacy-preserving approach to distributed learning, supposed to protect the privacy

of the training data. Unfortunately, the recent developments in the PPML literature have shown that, even

if the raw training data is not exposed, some information about them can be extracted from the model

updates (i.e., gradients). The publication of white-box privacy attacks that specifically target the federated

setting has made evident that solely withholding the training data is an insufficient strategy to ensure privacy

D3.2: Privacy-Preserving Design of ML Page 16 of 42

protection in these scenarios [2, 13, 9, 10, 7]. These attacks can be carried out during the training stage (in

addition to the threats during the inference phase) by an adversary who may corrupt one or more training

clients and potentially the supporting server, making it possible to run these privacy attacks on the

intermediate model updates.

4.2.2.1 Threat Actors: Aggregator vs. Clients

Besides the usual threat actor of the central setting (i.e., the querier), in the federated setting privacy attacks

can be performed also during training in a white-box fashion against the joint model at each round. The

actors that have access to these intermediate models are:

- the aggregator, and

- the training clients.

Note that an adversary that is able to corrupt the aggregator will have a much better view compared to the

individual training clients. In fact, the aggregator has access to the individual model updates, and they can

extract information about a specific local training dataset. On the other hand, a training client can only see

the joint update (as the difference of two subsequent global model instances), and even by removing its

own contribution, they would not be able to distinguish between the different contributions of the remaining

clients.

4.2.3 Overview of Available Solutions

To mitigate such attacks, solutions based on DP [14, 18, 19], FHE [20], and MPC [21, 22, 23] have been

introduced. However, these solutions come with trade-offs: DP introduces noise to protect privacy but may

lead to accuracy loss; FHE provides strong privacy guarantees but has a high computation cost for deep

arithmetic circuits that require bootstrapping, making it an unfeasible approach in many practical training

contexts; MPC may require a large number of interactions between multiple parties and high

communication bandwidth.

4.2.3.1 Differential Privacy

In the context of PPML, our goal is to protect the privacy of individual data records used to train the model

by incorporating differential privacy into the training mechanism. Specifically for deep learning, achieving

differential privacy involves injecting controlled noise in one or more parts of the training process [24],

which usually comes at the cost of model's accuracy. The elements that can be subject to noisy perturbation

include:

- input: adding noise directly to the input data, namely sanitising the dataset;

- loss function: incorporating noise into the loss function used during training;

- output: applying noise to the output of the training mechanism, that is the trained model

parameters;

- label: introducing noise to the ground-truth labels during training;

- gradient [18]: perturbing the gradients, which is the most commonly used approach to achieve

private deep learning, as it achieves a good trade-off between privacy and accuracy.

In collaborative learning settings, differential privacy can be applied not only at the data level [14] but also

at the client level [19], to conceal the presence of the individual training parties. However, the latter requires

a substantial number of clients to participate in the protocol to achieve meaningful privacy guarantees. In

our work, following the approach of [14], we employ data level differential privacy by injecting noise into

the gradients during training.

4.2.3.2 Secure Aggregation

Since the supporting server could also be compromised, some techniques have been designed to conceal

individual model updates to the aggregator by performing secure aggregation of such values. Instead of

sending the model updates to the orchestrator at the end of each round, the training parties run a protocol

that outputs the aggregated update, which is sent to the orchestrator. The orchestrator’s only job is then to

apply the aggregated update to the global model and send back the result to the training parties. To have an

immediate grasp of the effect of this mitigation, think about membership inference attacks: targeting a

specific data point in a joint update is much more difficult than in an individual update, due to the “hiding

in the crowd” effect. Secure aggregation can be based on different technologies:

D3.2: Privacy-Preserving Design of ML Page 17 of 42

- secret sharing [25],

- multiparty homomorphic encryption [26, 27], or

- additive masking [28, 29].

However, this security measure does still expose the global model to all the actors involved during training,

making the leakage from intermediate (aggregated) models still a concern.

4.2.3.3 Training with Secret Sharing based Multiparty Computation

To prevent information leakage from the intermediate model updates, MPC can be employed, allowing the

data owners to jointly execute the entire training mechanism in a secure manner, usually by exploiting

secret sharing schemes. An FL protocol can be seen as an MPC, where:

- the players are the training parties;

- the function to be jointly evaluated is the training of a model, and the output of this function is the

trained model itself;

- the distributed private inputs are the local training datasets.

However, a major challenge arises when scaling to a large number of parties, as it leads to impractical

communication complexity. To work around such overhead, the data-owners can delegate the computations

to a small cluster of non-colluding servers, usually composed of

- 2 parties: SecureML [30];

- 3 parties: ABY3 [22], Falcon [21], SecureNN [23], or

- 4 parties: FLASH [31], Trident [32].

However, this delegation-based approach imposes strong assumptions on the non-collusion of the

computing servers, strongly constraining the threat model. In the specific case of RE-SAMPLE, a direct

application of MPC-based approaches would prevent a scalability of a n-out-of-n security model for more

than 3 hospitals.

4.2.3.4 Training under Encryption

To overcome the limitations of small cluster MPC solutions to the threat model, a promising research

direction has emerged, leveraging FHE schemes to encrypt the model. By employing FHE, the federated

learning process can be conducted entirely under encryption, enabling secure collaboration among a large

number of parties. Related literature is limited but promising:

- SPINDLE [33] for generalized linear models;

- POSEIDON [20] for neural networks.

While scaling well in terms of communication complexity, these solutions suffer from high computational

overhead due to the heavy costs associated with performing operations under encryption, making their use

unfeasible in real-world applications. We will see more about this kind of approach and its limitations in

Section 5.2.

4.3 The importance of PPML for RE-SAMPLE

In the context of RE-SAMPLE, three hospitals (and potentially more in the future) collaborate to train a

joint ML model on privacy-sensitive medical data. The sensitivity of medical data precludes its outsourcing

to third-party entities for model training, making the adoption of FL-like solution necessary.

In this scenario, a potential adversary could corrupt one or more hospitals, and/or the supporting server

hosting the aggregator. Our goal is then to prevent the adversary from stealing the information from the

uncorrupted hospitals by adopting PPML measures both during the training and prediction phase.

D3.2: Privacy-Preserving Design of ML Page 18 of 42

5. Federated Training under Fully Homomorphic Encryption (FHE)

As mentioned in Section 4.2.3.4, an effective defence against white-box privacy attacks in the federated

setting involves using FHE to encrypt the model and perform the entire training process under encryption.

By adopting this approach, potential adversaries are prevented from accessing any meaningful information

about the model’s parameters, as all computations are performed on encrypted data. In this section, we

provide some additional details on FHE schemes, in particular about the CKKS scheme [34], and its usage

in a multiparty setting [35]. Additionally, we show how to use the multiparty variant of CKKS to perform

federated learning with an MLP under encryption [20].

5.1 CKKS and Multiparty FHE

FHE enables the evaluation of unlimited-depth arithmetic circuits on encrypted data, utilising a technique

called bootstrapping for refreshing ciphertexts after homomorphic operations. The CKKS scheme [34] is

well-suited for floating-point-like arithmetic and performs computations on vectors of real/complex

numbers, allowing for Single Instruction, Multiple Data (SIMD) operations. These properties make the

scheme particularly suitable for the computations needed by neural network models.

The CKKS scheme works with residual polynomial rings of the form 𝑅𝑞 ≔ ℤ𝑞[𝑥] (𝑥𝑛 + 1)⁄ , for some

positive integers 𝑞 and 𝑛, with 𝑛 being a power of two. A Residue Number System (RNS) instantiation of

CKKS [36] is usually adopted, which achieves the highest efficiency for CKKS among known variants of

the scheme. Here, we briefly describe it at a high level. Given unique primes 𝑞0, 𝑞1, … , 𝑞𝑀, an RNS chain

of moduli is built as 𝑄𝑖 = ∏ 𝑞𝑗
𝑖
𝑗=0 for 𝑖 ∈ {0,… ,𝑀}. A plaintext is an element 𝑚 ∈ 𝑅 ≔ ℤ[𝑥] (𝑥𝑛 + 1)⁄ ,

which can embed a vector of up to 𝑛 2⁄ slots, as the encoding is a map ℂ𝑛 2⁄ → 𝑅. A freshly encrypted

ciphertext is a pair 𝑐 ∈ 𝑅𝑄𝑀 × 𝑅𝑄𝑀 . Then, after each multiplication, the ciphertext is rescaled to scale down

the message and truncate the least significant bits, dropping the highest RNS limb, going from⁡𝑅𝑄𝑖 to 𝑅𝑄𝑖−1

for 𝑖 > 0. The maximum number of multiplications is given by 𝑀 − 1. However, not all of these levels can

be used for the main computation as the bootstrapping procedure consumes levels, too.

5.1.1 Homomorphic Properties

Given two ciphertexts 𝑐0, 𝑐1 encrypting the plaintexts 𝑚0 = (𝑚0,0, … ,𝑚0,𝑛 2⁄),𝑚1 = (𝑚1,0, … ,𝑚1,𝑛 2⁄),
respectively, CKKS natively allows for the following homomorphic operations:

- Addition: 𝑐0 + 𝑐1, which corresponds to the component-wise addition of the underlying plaintexts

𝑚0 +𝑚1 = (𝑚0,0 +𝑚1,0, … ,𝑚0,𝑛 2⁄ +𝑚1,𝑛 2⁄).

- Multiplication: 𝑐0𝑐1, which corresponds to the component-wise multiplication of the underlying

plaintexts 𝑚0𝑚1 = (𝑚0,0𝑚1,0, … ,𝑚0,𝑛 2⁄ 𝑚1,𝑛 2⁄).

- Vector rotation: 𝑐0 ≪ 𝑘 for a given 𝑘 ∈ {−𝑛 2⁄ ,… ,0,… , 𝑛 2⁄ }, which corresponds to the rotation

of the underlying plaintext by 𝑘 positions 𝑚0 ≪ 𝑘 = (𝑚0,𝑘 , … ,𝑚0,𝑛 2⁄ ,𝑚0,0, … ,𝑚0,𝑘−1) (the

indices are modulo 𝑛 2⁄). For convenience, we denote by 𝑐0 ≫ 𝑘 the rotation by −𝑘.

Note that additions and multiplications can also be performed between a ciphertext and a plaintext.

To perform homomorphic computations efficiently, we can pack an entire vector in a single ciphertext and

exploit the SIMD capabilities of CKKS to perform vector addition and component-wise multiplication in

constant time. Note that if the vector is too long to fit the number of slots dictated by given FHE parameters,

one can split the vector among multiple ciphertexts. However, in a neural network, we also need to multiply

by weight matrices and evaluate non-linear activation functions. Now, we describe the approaches we can

adopt to perform efficient vector-matrix multiplication under encryption and homomorphically evaluate

non-polynomial functions.

5.1.1.1 Matrix Multiplication

To efficiently perform matrix multiplication under encryption, the idea is to encode the matrix as a vector

in such a way that only one homomorphic multiplication is required. There exist multiple encoding schemes

in the literature for matrices. For instance, in the column-based approach [37, 38], one encodes a matrix by

concatenating its columns one after the other. The vector-matrix multiplication is then performed by first

D3.2: Privacy-Preserving Design of ML Page 19 of 42

replicating the vector to match the number of columns of the matrix, then performing a SIMD multiplication

between the two, and finally by performing cumulative addition of the result. All those operations can be

realized by combining homomorphic additions, rotations, and multiplications by a masking vector.

Moreover, the vector replication and the cumulative addition can be made more efficient by recursion,

though requiring padding the inputs to a suitable power of two. Similarly to this column-based approach, a

row-based encoding can be employed as well [39].

To perform subsequent matrix multiplications, it is convenient to use the alternating packing approach

proposed in [20]. It is based on the observation that the result of a vector-matrix multiplication in column-

based encoding requires extra rotations to prepare it for a multiplication with another column-based

encoded matrix, while it is perfectly ready for a multiplication with another row-based encoded matrix. The

idea is then to encode the matrices that are in consecutive secret layers by alternating between column- and

row-based encodings. Note that multiplying by the transpose of a matrix is equivalent to multiplying by the

matrix in the opposite encoding. We can exploit this property to efficiently compute gradients in the back-

propagation step.

5.1.1.2 Evaluating Non-Polynomial Functions

By combining additions and multiplications it is possible to evaluate any polynomial function. However,

when it comes to non-polynomial functions like the exponential function, we need to find alternative

solutions. To evaluate non-polynomial functions with an FHE scheme, a possible strategy consists of using

a high-degree polynomial to approximate the given function. This is usually done by exploiting the

Chebyshev interpolation algorithm, which assures uniform convergence within a given interval [𝑎, 𝑏]. Note

the importance of correctly estimating the input range of the function to assure the correctness of the

function evaluation.

5.1.2 Multiparty FHE

In Multiparty Homomorphic Encryption (MHE), the secret key is shared among multiple parties, who can

use their shares to collectively generate joint public/evaluation keys and perform distributed decryption and

bootstrapping protocols. MHE comes in two fashions, depending on the access structure of the private key:

- threshold FHE schemes [40], where the secret key and its access-structure are fixed at the

beginning, and they usually allow for decryption if at least a given number of parties are online;

- multikey FHE schemes [41], where the secret key and its access-structure are dynamic, each party

encrypts its data under its own secret key, and the output of homomorphic operations is a ciphertext

encrypted under the joint keys of the parties involved in that specific computation.

On the one hand, the multikey FHE approach is more flexible, but on the other hand it also leads to an

increase in ciphertext size (typically linear) and computation runtime (often quadratic) with the number of

parties [42], which does not occur with the threshold FHE approach.

For ML applications, we usually consider the threshold FHE version of the CKKS scheme, which follows

the design of Asharov et al. [43] and Mouchet et al. [35]. Threshold CKKS supports the same operations as

the regular single-key CKKS. The only differences in threshold CKKS are:

- the public key generation is now distributed among all parties, each of which generates a public

key share and broadcasts it to the other parties; these shares are then aggregated into the collective

public key;

- the rotation key generation is done in a similar way to the public key generation;

- the multiplication key generation requires some extra rounds of communication with respect to the

single-key variant;

- the decryption is also distributed among all parties, each of which generates a partial decryption

share and broadcasts it to the other parties; these shares are then aggregated into the decryption

result;

- the bootstrapping is done in a similar way to the decryption procedure, with the parties performing

a masked partial decryption of the ciphertext and then adding an encryption of the negated mask to

generate a refreshed encryption of the message. The masking requires ~3 additional multiplicative

levels to achieve the desired statistical security [20].

D3.2: Privacy-Preserving Design of ML Page 20 of 42

The main drawbacks of MHE that often make it impractical in real-world contexts are the heavy

computation costs and the significant communication overhead, especially due to the need for distributed

bootstrapping, which can become a bottleneck in practical implementations. This is particularly relevant in

ML scenarios when evaluating deep multiplicative circuits like neural networks. Additionally, the inherent

noise in the encryption scheme and the approximation of non-linear functions can lead to a decrease in the

model’s accuracy.

5.2 Available Solutions for FL under FHE

Currently, the only available works that propose designs for FL under FHE are

- SPINDLE [33] for generalized linear models, and

- POSEIDON [20] for dense and convolutional neural networks.

Since deliverable D3.1 lists dense neural networks among the models that are deemed suitable for RE-

SAMPLE, we will provide a privacy-preserving solution for a MLP model. Here, we focus on the

description of POSEIDON. In this solution, the training parties instantiate the multiparty version of CKKS

by performing a distributed generation of the keys. The orchestrator receives the public key, along with

multiplication and rotation keys. Then, the orchestrator initialises the model’s parameters, encrypts them,

and the federated training process starts. All the computations are performed under encryption for a given

number of iterations, after which the encrypted model can be used for prediction.

The inference phase can also be performed obliviously. The querier encrypts its query using the collective

public key and sends the corresponding ciphertext to the training parties. Then, one of those performs a

feedforward step of the model for the given encrypted input. The encrypted result undergoes a distributed

decryption procedure, where each party computes its decryption share and sends it to the querier. Finally,

the querier aggregates the shares to get the decryption of the model’s output. Note that in this oblivious

inference process none of the training parties can see the query’s input nor output in plaintext, hence fully

preserving the query’s privacy.

5.2.1 Performance Limitations

Unfortunately, this solution is quite impractical for deep models or big datasets, since a training that would

last a few hours in plaintext takes a few months under encryption [20]. The main cause for such a

performance overhead is twofold:

- the high computational cost for the homomorphic operations, in particular for evaluating non-linear

activation functions such as sigmoid and ReLU;

- the communication cost given by the bootstrapping protocol, which is distributed and must be

invoked after every 1-2 layers.

D3.2: Privacy-Preserving Design of ML Page 21 of 42

6. Proposed Solution: Partial Encryption of the Model

In this section we describe the proposed PPML solution for RE-SAMPLE, built upon the fully encrypted

solutions presented in Section 5. The underlying idea is that encrypting the full model might be unnecessary,

as different portions of the model might leak different amounts of information. This leads to a trade-off

between efficiency and privacy, orthogonal to the one between privacy and accuracy already provided by

differential privacy. Here, we describe the general solution and assess it against state-of-the-art privacy

attacks on publicly available datasets.

6.1 Design and Workflow

A flexible collaborative learning protocol that allows users to trade off privacy for efficiency has been

designed. Our approach involves using an FHE scheme to encrypt the most vulnerable parts of the model

and performing federated training on this partially encrypted model. The level of privacy protection is

determined by the selection of layers to be encrypted (secret layers ℒ𝑆), while the remaining layers are left

in plaintext (exposed layers ℒ𝐸). The more layers we encrypt, the less information potential adversaries can

access, thus enhancing privacy, but it also leads to more computations performed under encryption, thus

reducing efficiency. This flexibility allows our approach to achieve greater privacy than employing standard

FL [16], while achieving a more practical level of efficiency than fully encrypted solutions [33, 20].

When performing feedforward and backpropagation on the model, we need to be careful about how to

switch from secret to exposed layers and vice versa. Computations are conducted under encryption

whenever an encrypted layer is encountered, possibly invoking bootstrapping to refresh intermediate

computations. When an exposed layer is encountered, a decryption is called to allow continuing the training

pass in plaintext (see Figure 1).

Figure 1: Diagram representation of the approach: encryption of a hidden layer on the left-hand side,

encryption of the output layer on the right-hand side

6.1.1 Protocol Description

We describe the protocol for MLP models, trained with Stochastic Gradient Descent (SGD) optimizer, and

Mean Squared Error (MSE) loss, but it can be easily generalized to any feed-forward model. Including

simple momentum-based optimizers such as Nesterov Accelerated Gradient is straightforward and only

requires an additional weight update. While adaptive optimizers such as AdaGrad [44], RMSProp [45], and

Adam [46] may require additional care due to the division by the rescaling coefficient.

6.1.1.1 Global Training

The protocol involves 𝑁 training parties 𝑃1, … , 𝑃𝑁 and a central server 𝑆, whose role can potentially be

taken by any 𝑃𝑖. The parties want to jointly train an MLP model, thus they agree on the model depth 𝐿,

architecture, activation functions, training hyper-parameters, and on the set of layers to encrypt ℒ𝑆. The

central server initiates the protocol by coordinating the FHE setup and key-generation phase, at the end of

D3.2: Privacy-Preserving Design of ML Page 22 of 42

which 𝑃1, … , 𝑃𝑁 have their own private shares, and all actors possess the corresponding public key,

relinearization, and rotation keys, which allow all parties to perform the necessary homomorphic

operations. The central server initialises the model 𝑓 in plaintext, by generating random weight matrices

𝑤1, … , 𝑤𝐿 and bias vectors 𝑏1, … , 𝑏𝐿 of appropriate sizes, according to the distribution given by the chosen

initialization technique. Then, it uses the public key to encrypt the parameters 𝑤𝑖, 𝑏𝑖 corresponding to the

secret layers 𝐿𝑖 ∈ ℒ𝑆, after proper encoding (see Section 5.1.1.1).

At this point, the training starts, and proceeds as in standard FL. The central server broadcast the partially

encrypted model to 𝑃1, … , 𝑃𝑁. Each party 𝑃𝑖 performs a certain number of local training iterations, and

sends back the updated local model to the central server. The central server finally aggregates the local

models, by averaging the parameters, using homomorphic addition and scalar multiplication by 1 𝑁⁄ for

the ones in ℒ𝑆. These steps are repeated for a fixed number of iterations 𝐸𝑔 or until some convergence

condition is satisfied (see Protocol 1).

Protocol 1. Global Training.

6.1.1.2 Local Training

The local training subroutine, presented in Protocol 2, involves each party 𝑃𝑖 performing 𝐸𝑙 model updates

locally before updating the central model. During each local update, a batch of size 𝐵 is sampled from the

local training set 𝐷𝑖. For each example in the batch, one training step is performed, which includes

feedforward and backpropagation to compute gradients. These gradients are then averaged across the batch

sample and used to perform a local model update. After 𝐸𝑙 updates, the local model is sent to the central

server, which proceeds to the aggregation step. We can add L2 regularization at the cost of an additional

D3.2: Privacy-Preserving Design of ML Page 23 of 42

plaintext-scalar multiplication, by multiplying the weight matrices by 1 − 𝜂𝜆 𝐵⁄ just before line 8, where 𝜆

is the weight decay coefficient.

Protocol 2. Local Training.

Protocol 3 outlines one training pass of our approach. To feedforward an input through a partially encrypted

model, we begin by feeding the vector in plaintext starting from the input layer. When an encrypted layer

is encountered, the computation proceeds under encryption, with bootstrapping being called when

necessary (we omit bootstrapping calls from the protocol description since their call frequency depends on

the FHE parameters). As soon as an exposed layer is reached, a distributed decryption is invoked. The same

process is followed during the backpropagation step. Note that if the last layer is encrypted, the loss is also

computed under encryption.

Protocol 3. One Training Pass.

Unless we are at the last layer of the model, decrypting just after the linear transformation at line 5 is

optimal. To show this, let us consider the case we are at the end of a group of encrypted layers, that is we

are at layer 𝐿𝑗 for some 𝑗 < 𝐿, with 𝐿𝑗 ∈ ℒ𝑆 and 𝐿𝑗+1 ∈ ℒ𝐸. If instead of decrypting 𝑢𝑗, we perform an

additional step under encryption, and decrypt after the evaluation of 𝜙𝑗(𝑢𝑗), then an adversary could just

invert the activation function if bijective (e.g., sigmoid) or still get information about 𝑢𝑗 for most of the

D3.2: Privacy-Preserving Design of ML Page 24 of 42

activation functions commonly used. If we keep going under encryption for a step further, and decrypt for

instance after the next linear transformation 𝑢𝑗+1 in order to keep 𝑙𝑗 private, then, since 𝐿𝑗+1 ∈ ℒ𝐸, we

would need to invoke a decryption for ∇𝑤𝑗+1, which depends on 𝑙𝑗. However, an adversary could easily

retrieve 𝑙𝑗 given ∇𝑤𝑗+1 and ∇𝑏𝑗+1, which is also in plaintext since 𝐿𝑗+1 ∈ ℒ𝐸. Similar remarks hold for the

decryption of the error in the backpropagation phase at line 15.

Consequently, when encrypting a single non-output layer, the corresponding layer output and gradient

cannot be protected. Thus, to protect the initial or central portions of the model, at least two consecutive

layers need to be encrypted, and even in that case, the gradient of the bias of the last layer of that group will

be exposed. One approach to address this limitation is to omit the bias parameters on that specific layer.

An additional argument against encrypting only one non-output layer is the potential for an adversary to

reconstruct the encrypted parameters. If the adversary can gather enough input and output pairs (𝑥, 𝑦),
where 𝑦 = 𝑤𝑥 + 𝑏, they could retrieve the values of 𝑤 and 𝑏 by solving a system of linear equations with

the layer parameters as the unknowns. Encrypting two consecutive layers (or the last one), already makes

the system of equation significantly harder to solve. The system will involve many more variables and the

activation function of the first layer as well, which is typically non-linear. As an additional measure,

lowering the precision of the FHE scheme and introducing additional noise in the ciphertext can further

complicate the reconstruction of the encrypted layers.

6.1.1.3 Prediction

After completing the training phase, the partially encrypted model can be directly used for predictions.

However, cooperation among the training parties remains necessary for distributed bootstrapping and

decryption calls. Prediction queries can be initiated by any of the training parties or an external entity. If

the querier is one of the training parties, they can locally conduct the feedforward step and seek assistance

from the others only for bootstrapping and decryption, including the potential output decryption if the last

layer is also encrypted. If the querier is an external entity, additional precautions are needed due to the

presence of exposed layers. To ensure the privacy of the query, the querier encrypts their input with the

collective public key of the FHE scheme, and sends the encrypted input to one of the training parties. The

selected party will then perform the feedforward pass on behalf of the querier. In this case, operations on

the exposed layers must be adapted to work under encryption. While matrix multiplication and bias addition

remain straightforward, the activation functions need to be approximated to be homomorphically evaluated,

leading to a potential loss of accuracy. Moreover, unlike during training, the output of a group of adjacent

layers should not be decrypted. (Note: It is possible to perform plaintext operations in exposed central

layers, when they are sufficiently distant from both the input and output layers to lower the possibility of

reconstructing the query input or output.) The final output of the model then remains encrypted, regardless

of whether the last layer is private or not. At this point, the training parties can send the decryption shares

of the output to the querier, who can then reconstruct the output in clear.

6.2 Assessment on Public Datasets

In this section, we evaluate our partially encrypted model approach for different choices of ℒ𝑆. Note that

we conduct our experiments in this document in order to demonstrate the general approach and assess the

trade-off of our approach for different data sets. Further experiments in the RE-SAMPLE specific context

will be provided in D4.5: Proof-of-concept privacy-preserving ML and data aggregation and D4.6: Report

on the final parameter selection at a later stage of this project.

6.2.1 Experimental Setup

We implement the prototype in C++, building on top of the OpenFHE library [47] for the multiparty CKKS

functionalities (available at https://github.com/openfheorg/openfhe-development). Our implementation

uses CKKS with a 5-bit integral precision, 55-bit decimal precision (scaling factor), a moduli tower with 8

levels, and a cyclotomic ring degree of 215. We use an 𝑁-out-of-𝑁 threshold scheme with additive sharing

of the secret key, where all parties need to be present to perform decryption and bootstrapping. But the

scheme can be easily modified to allow for arbitrary thresholds, i.e., 𝑡-out-of-𝑁 threshold FHE using Shamir

secret sharing. To assess the performance of our prototype in a realistic scenario, we run the experiments

https://github.com/openfheorg/openfhe-development

D3.2: Privacy-Preserving Design of ML Page 25 of 42

within Mininet (available at https://github.com/mininet/mininet), a network emulator that allows us to

configure different network topologies and impose constraints on bandwidth and network delay. Different

virtual hosts are spawned within a server with an Intel Xeon Platinum 8358 running at 2.60 GHz, with 64

threads on 32 cores, and 512 GB RAM. For the evaluation in particular, we consider a setup with 3 training

parties and a central server, communicating over TCP in a star topology network. The communication is

constrained by 1Gbps bandwidth and 10ms network delay between the nodes.

Each party is provided with 30 examples from the MNIST dataset, and they jointly train an MLP model

with two hidden layers of size 30, 20. Each layer uses sigmoid activation functions, which is approximated

in [−10, 10] by a polynomial of degree 13 for HE evaluation. To simplify the analysis of the trade-off given

by the choice of ℒ𝑆, we decided to focus on the specific case of encrypting only one group of contiguous

layers containing the output layer, which, from the investigation in [2], seems to be one of the most

meaningful settings for our approach when considering inference attacks. That is, given a model 𝑓 of depth

𝐿, we then have ℒ𝐸 = {𝐿1, … , 𝐿𝑇} and ℒ𝐸 = {𝐿𝑇+1, … , 𝐿𝐿} for some 𝑇 ∈ {0,… , 𝐿}. This way, the trade-off

is controlled by the one-dimensional parameter 𝑇: when 𝑇 = 0 we are in the extreme case of FL with full

encryption of the model [20], while when 𝑇 = 𝐿 we are in the extreme of FL in plaintext [16]. We report

the results for the non-optimized version of our framework.

6.2.2 Datasets and Models Description

We selected well-known public datasets widely used in the PPML literature: with Texas-100, Purchase-

100, Locations our datasets include tabular data, and with AT&T, MNIST, EMNIST Letters, LFW our

datasets include images. This mix ensures a comprehensive evaluation of the privacy attacks in our

prototype. We highlight that this work’s main goal is not to achieve the highest possible accuracy on the

given datasets, but to investigate the efficacy of privacy attacks across different layers of our target model.

To accomplish this, we deliberately subsampled some of the datasets, using a reduced dataset for training

the models. By doing so, we aim to create a vulnerable model that is more susceptible to privacy attacks.

There are various ways to make a model vulnerable, constraining the training set to a subset is comparable

with real-world scenarios, where training parties might struggle with limited data availability. This

approach also helps in expediting the experimental assessment of our encrypted training solution, as the

experiments can be run within a reasonable timeframe given the reduced training data size.

As for the models, we primarily focus on MLP architectures, for compatibility with our FHE prototype,

using the plain SGD optimizer and minimising the MSE loss. Specifically, we train an MLP with two

hidden layers of size 30 and 20 on the MNIST datasets, and 256, 128, and 64 on the Location dataset. For

Purchase100 and Texas100, we adopt the MLP architecture proposed in [2], which consists of hidden layers

with sizes 1024, 512, 256, and 128. Additionally, we train an MLP with two hidden layers of size 64 on the

EMNIST Letters dataset, and a Convolutional Neural Network (CNN) on the LFW dataset. For the CNN,

we adopt the architecture proposed in [13], which consists of three convolutional layers with 32, 64, and

128 filters, each with a 3x3 kernel and a max pooling layer, followed by two fully connected layers of size

256 and 2.

We will now give a more detailed description of the datasets we used for our experiments.

AT&T Database of Faces. This face dataset (available at https://cam-orl.co.uk/facedatabase.html) was

created at the AT&T Laboratories Cambridge. It consists of 400 grey-scale images of size 112x92, depicting

the faces of 40 individuals in various lighting conditions and facial expressions.

EMNIST Letters. This letter dataset (available at https://www.nist.gov/itl/products-and-services/emnist-

dataset) is part of the extended version of the MNIST dataset by NIST [48]. It consists of 145,600 grey-

scale images, representing both upper- and lower-case handwritten letters, which has been centred and

resized to 28x28. The dataset contains 26 classes, one for each letter from 'a' to 'z'.

Labelled Faces in the Wild (LFW). This face dataset (available at http://vis-www.cs.umass.edu/lfw/) was

developed by researchers at the University of Massachusetts, Amherst [49]. It consists of 13,233 RGB

https://github.com/mininet/mininet
https://cam-orl.co.uk/facedatabase.html
https://www.nist.gov/itl/products-and-services/emnist-dataset
https://www.nist.gov/itl/products-and-services/emnist-dataset
http://vis-www.cs.umass.edu/lfw/

D3.2: Privacy-Preserving Design of ML Page 26 of 42

images, depicting the faces of 5,749 individuals. The dataset has been further labelled with attributes such

as gender, race, age group, hair style, and eyewear.

Locations. This location dataset (available at https://github.com/privacytrustlab/datasets) was created by

the authors of [4] from Foursquare check-in data for the city of Bangkok. The processed dataset contains

5010 examples, each corresponding to a unique user. Each record comprises 446 binary features, indicating

whether a user visited a specific region or location type. The data is clustered into 30 classes, representing

different geosocial types. Following [4], we use 1200 examples for training, and the remaining data for

validation.

MNIST. Standard handwritten digits dataset by NIST (available at

https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz). It consists of 70,000 grey-scale

images, centred, and resized to 28x28. The dataset contains 10 classes, one for each digit from '0' to '9'. Due

to the small number of classes and the low feature variability within the same class, this dataset has been

observed to be particularly resilient against membership inference attacks [4]. For evaluation purposes, we

want to start from a situation in which the target model is vulnerable. Thus, we drastically reduce the

training set to a mere 100 examples. For compatibility with our current implementation of the prototype,

we resize the images to 8x8.

Purchase-100. This purchase dataset (available at https://github.com/privacytrustlab/datasets) was created

by the authors of [4] starting from Kaggle's “acquire valued shoppers” challenge dataset, containing the

shopping history data of several users. The processed dataset contains 197,324 examples, each

corresponding to a unique user. Each record comprises 600 binary features, indicating whether a user

purchased a given product. The data is clustered into 100 classes, representing different purchase styles.

For our experiments, we use 1000 examples for training and the remaining data for validation.

Texas-100. This hospital dataset (available at https://github.com/privacytrustlab/datasets) was created by

the authors of [4] starting from the Hospital Discharge Data records released by the Texas Department of

State Health Services. The processed dataset contains 67,330 examples, each corresponding to a unique

patient. Each record comprises 6,169 binary features, containing information about the patient, the causes

of injury, the diagnosis, and the procedures the patient underwent. The data is clustered into 100 classes,

representing the 100 most frequent medical procedures present. For our experiments, we use 1000 examples

for training and the remaining data for validation.

6.2.3 Runtime and Communication Performance

In this section, we discuss the efficiency of the proposed approach in terms of computation time,

communication time, and communication size, by performing both a theoretical analysis and an

experimental assessment.

6.2.3.1 Theoretical Analysis

Compared to a fully encrypted approach, partially encrypted models offer significant efficiency advantages,

including reduced number of computations under encryption, lighter model updates, and fewer

communication rounds. Providing a precise efficiency analysis is challenging due to the variable presence

of bootstrapping and the exceptions to which computation is performed homomorphically depending on

which layers are encrypted. Nonetheless, we can offer general considerations that cover any choice of ℒ𝑆.

To simplify the analysis, we assume all layers to have same order of magnitude sizes, and plaintext size

and operation costs to be negligible with respect to their encrypted counterpart.

In general, since computations are carried out in plaintext in the exposed layers, we expect a lower-bound

for the gain in computational complexity to be at least linear in the number of exposed layers relative to the

total number of layers in the model, i.e. |ℒ𝐸| 𝐿⁄ . Additionally, we can avoid the homomorphic evaluation

of the last activation function in each group of encrypted layers (except the ones containing the last layer).

Moreover, as the training parties decrypt their computations at the end of each encrypted block, the need

for distributed bootstrapping decreases or even disappears. This results in gains in computation efficiency,

communication size, and communication rounds, as each bootstrapping process typically requires one

https://github.com/privacytrustlab/datasets
https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
https://github.com/privacytrustlab/datasets
https://github.com/privacytrustlab/datasets

D3.2: Privacy-Preserving Design of ML Page 27 of 42

round-trip of communication. This advantage is amplified by the fact that bootstrapping in the CKKS

scheme needs the ciphertext to have some levels left, further increasing the computational overhead in fully

encrypted models. Depending on the number of contiguous encrypted layers, even faster somewhat HE

schemes can be adopted.

Regarding the communication size during model update and broadcast, we again observe a linear gain in
|ℒ𝐸| 𝐿⁄ , as the model parameters corresponding to exposed layers are sent in plaintext. On the other hand,

during the aggregation phase, fewer parameters need to be averaged under encryption, leading to an

additional gain in terms of computational complexity. Finally, we note that in the optimized version of our

solution, the performance gain factor |ℒ𝐸| 𝐿⁄ changes according to the number of exposed layers across the

training epochs.

6.2.3.2 Experimental Evaluation

For the experimental evaluation, we only report the results related to the MNIST dataset, since no significant

difference appeared among different datasets. As shown in Table 1, the efficiency of our approach scales

approximately linearly with 𝑇, both in terms of run time and communication size.

Table 1: Execution time and communication size of our approach on the MNIST dataset for a 3-layer MLP,

with varying levels of layer encryption: none (T = 3), last layer (T = 2), last two layers (T = 1), and full model

encryption (T = 0)

The reported run time and communication size have been averaged among the training parties for

consistency. In particular, the communication size refers to the total volume of messages received and sent

per party over 300 epochs of training. The model achieves the same test accuracy as its plaintext

counterpart. The noise from the FHE scheme and the approximation error of the activation functions do not

have a significant impact on the training procedure.

In Figure 2, we observe that communication time is the dominant factor on the overall performance.

Figure 2: Computation vs. communication time for one training pass in our approach on MNIST for a 3-layer

MLP, with varying levels of encryption: full model encryption (T = 0), last two layers (T = 1), last layer (T = 2),

and none (T = 3)

Note that the high communication and overall run time are partly due to our current implementation being

still a prototype, and the use of relatively high-degree approximation for the activation functions. We

acknowledge that there are large margins for optimization, starting from compressing the model updates

before transmitting them. Also, using a tile-packing of the weight matrices as suggested in [50] may increase

the performance of our approach. However, our main focus is on comparing the relative efficiency measures

between different choices of encrypted layers, rather than their absolute values.

D3.2: Privacy-Preserving Design of ML Page 28 of 42

6.2.3.3 Micro-benchmark

In this section, we provide measurements for various FHE functionalities, enabling estimation of our

approach’s scalability for different model architectures. The execution run time and communication size

per training party, averaged over multiple runs, are presented in Table 2. For each functionality, we have

divided the execution time into computation and communication time. Note that the missing time from the

total execution time reflects the idle time when parties are waiting for other parties to complete their

computations in order to proceed.

Table 2: Microbenchmarks of different FHE functionalities, for 3 parties, 5-bit integral precision, 55-bit

decimal precision, 8-level moduli tower, and 215 cyclotomic ring degree. The “one layer” functionality refers

to a fully connected layer, while the “one pass” functionality refers to an entire pass (forward or backward) of

the model under encryption

6.2.4 Privacy Analysis

In this section, we sketch a security proof for the encrypted layers of the model, and we discuss the

capabilities of different types of adversaries for each class of privacy attack against the exposed layers.

6.2.4.1 Security Proof for the Encrypted Layers

Our approach aims to preserve the privacy of the training data, during both the training and prediction

phases, by encrypting the most vulnerable layers of the model. In the semi-honest setting, we prove that no

party, including the central server, can learn more information about the training data of any other party or

the model parameters corresponding to any layer in ℒ𝑆, other than what can be deduced from their own data

(including the model output, in case of predictions), and from the parameters and intermediate computations

of the layers in ℒ𝐸. In the case of predictions requested by an external entity, we can make this claim

stronger, as the querier should not learn anything, other than what can be deduced from only their own input

data and the query output.

For the security proof, we proceed as in [20], but assuming the simulator is also given access to the

parameters of the exposed layers at each iteration, and to the output of each decryption call. The idea is to

see the overall scheme as a composition of the underlying FHE protocols, which are all simulatable. For

the basic protocols like key generation and decryption, we rely on the proofs by Mouchet et al. [35], while

for the distributed bootstrapping, we rely on the proof by Sav et al. [20]. Note that the security of our

approach does not hold for a malicious adversary, which can exploit the decryption call in the protocol

decrypt the secret layers.

D3.2: Privacy-Preserving Design of ML Page 29 of 42

6.2.4.2 Privacy Assessment for the Exposed Layers

Threat model. We study privacy attacks in the grey-box setting, which represents a more flexible threat

model generalising white-box scenarios for privacy-attacks, by considering intermediate adversary

capabilities. In this grey-box setting, the adversary has only access to the subset of the model parameters

corresponding to the exposed layers, for which the adversary has the same access as in the white-box setting.

Thus, the adversary can compute the loss value for a given labelled example only if the last layer is exposed.

Conversely, the adversary has no access to any parameters of the encrypted layers.

In the rest of the section, we discuss whether specific attacks can still run on the exposed layers. We consider

three threat model configurations, based on the possible combinations of the ML and cryptographic

adversary’s capabilities:

1. ML-passive and crypto-passive, where the adversary follows the protocol and can only use inputs

from the original dataset (no maliciously crafted inputs);

2. ML-active and crypto-passive, where the adversary follows the protocol but may craft malicious

inputs for the training procedure;

3. ML-active and crypto-active, where the adversary can arbitrarily deviate from the protocol and

may craft arbitrary malicious input.

Note that the distinction between the first two settings is important in real-world scenarios since it has

implications in terms of detectability and liability. If a client becomes corrupted during the training process,

an ML-active attack is potentially more detectable than an ML-passive attack. Detection can occur by

analysing the intermediate updates or the final model, or by employing some form of commitment to the

training dataset.

In general, if at least one layer is encrypted, no attack can be carried out in the ML-passive and crypto-

passive settings, as they all require to at least perform an inference on an example not belonging to the

original training dataset (the target of inference, or the dummy example for model inversion). In the ML-

active and crypto-passive settings, the inference attacks can work limited to the exposed layers, while the

model inversion attacks can work only if the first layer is exposed. In the ML-active and crypto-active

settings, all attacks are feasible, as it would be enough to ask for the decryption of the secret parameters.

The active versions of each attack are possible as well. In Table 3, we outline the capabilities of each attack

discussed in Section Privacy Attacks4.1 for the threat model configurations described above. Note that, in

contrast to FL in plaintext, the presence of encrypted layers restricts the adversary from freely conducting

any inference on the model.

Table 3: Description of attack capabilities in different threat models, for different privacy attacks. For a

description of the active variant of the attacks, we refer to the corresponding works

Attack Class ML-passive &

crypto-passive

ML-active &

crypto-passive

ML-active &

crypto-active

Nasr et al. (2019) Membership

inference

The attack is not

possible, since the

attacker cannot

pass its target data

point through the

model.

The attack is

possible, but

limited to its

passive variant on

the exposed

layers.

The active variant

of the attack is

also possible,

since the attacker

can perform

gradient ascent.

Fredrikson et al.

(2015)

Model inversion The attack is not

possible, since the

attacker cannot

pass the dummy

input through the

model.

The attack is not

possible if the first

layer is encrypted,

since the attacker

cannot

backpropagate

over the input

layer.

The attack is

always possible,

the malicious

adversary can

decrypt the first

layer if necessary.

Hitaj et al. (2017) Model inversion The attack is not

possible, since the

The attack is not

possible if the first

The attack is

always possible,

D3.2: Privacy-Preserving Design of ML Page 30 of 42

attacker cannot

pass the generator

output through the

model.

layer is encrypted,

since the attacker

cannot

backpropagate to

the generator.

the malicious

adversary can

decrypt the first

layer if necessary.

Zhu et al. (2019) Model inversion The attack is not

possible, since the

attacker cannot

pass the dummy

input through the

model.

The attack is not

possible, since the

attacker cannot

compute the

derivative of the

gradients with

respect to the

input.

The attack is

always possible,

the malicious

adversary can

decrypt any layer

if necessary.

Melis et al.

(2019)

Property inference The attack is not

possible, since the

attacker cannot

pass the target

batch through the

model.

The attack is

possible, but

limited to the

exposed layers.

The active variant

is not possible if

the last layer is

encrypted.

The attack is

always possible,

the malicious

adversary can

decrypt any layer

if necessary.

More details about the individual attacks is as follows.

Membership Inference. In the grey-box setting, the efficacy of membership inference attacks heavily

depends on access to the last layers of the model. While the initial layers of a neural network tend to extract

simple features from the input, enabling them to generalize well, the later layers specialize in detecting

higher-level abstract features in the input, making them prone to overfitting and memorising the specific

training examples. For instance, in a CNN model trained for image classification, you can expect the first

layers to learn more about edges and abstract shapes of the input image, while the last layers more about

intricate texture and artifacts within those shapes [51]. Moreover, as the neural network progresses to the

later layers, the parameter capacity increases, causing the target model to store information about the exact

training samples [2]. This behaviour can be attributed to the vanishing gradient effect, where the impact of

a training step diminishes for the earlier layers compared to the later layers. Therefore, if the last layers of

the model are accessible, membership inference attacks tend to be stronger due to the higher degree of

membership information leakage.

In line with the results by Nasr et al. attacking the last layers, we observe a similar effect for our generalized

setting: the combination of multiple (intermediate) layers does not leak significantly more membership

information than the just the last of those layers. For instance, attacking layers 1, 3, and 4 of a given model

does not provide a significant advantage over attacking just layer 4. Consequently, we simplified our

experimental setting and attack each layer individually and do not expect significantly different accuracy

compared to attacks that include any combination of previous layers. In scenarios where the attacker knows

the ground-truth label associated with the target example, they can perform backpropagation. We account

for this case by conducting an additional cycle of attacks, where the attack model is provided with the

ground-truth label, the layer gradient, and, when the last layer is accessible, the loss value.

The number of members and non-members used for both training and testing the attack model is the same,

resulting in a baseline attack accuracy of 50%. In Figure 3, we present the outcome of our experimental

assessment on different datasets. We report the average and maximum attack accuracy over four runs. Our

experimental results confirm the trend of the later layers of a model to leak more information compared to

earlier layers. In particular, the very last layer leaks considerably more information than the others. This is

especially evident in the cases of Purchase100 and MNIST, where the attack accuracy for layer output

increases from 55.12% to 90.10% (~7.8 times increase offset to the baseline) and from 50.81% to 64.49%

D3.2: Privacy-Preserving Design of ML Page 31 of 42

(~17.8 times increase offset to the baseline), respectively, when passing from the second-to-last layer to the

last layer.

Figure 3: Layer-wise accuracy of the white-box membership inference attack by Nasr et al. (2019) against

different datasets and models, exploiting both the layer's output and gradient

Additionally, in line with the findings of Nasr et al [2], our experiments confirm that the availability of

gradients contributes to a higher attack accuracy.

Model inversion. All the model inversion attacks described in Section 4.1.2.2 share the common

requirement of computing the derivative of the target model’s loss with respect to the model input: 𝜕𝐿 𝜕𝑥⁄ ,

which can be written as
𝜕𝐿

𝜕𝑥
=

𝜕𝐿

𝜕𝑙1

𝜕𝑙1

𝜕𝑥
, where 𝑙1 is the output of the first layer. To compute this derivative, the

attacker then needs access to the first layer's gradients and parameters. Blocking access to the first layer

straightforwardly prevents the attack by Fredrikson et al. [9]. This limitation also prevents backpropagation

from the target model to the generator for GAN-based approaches like [10], and hinders the ability to solve

the gradient difference minimization problem in the case of the attack by Zhu et al. [7]. We conclude that

denying the attacker access to the first layer of the model appears to be sufficient in preventing these specific

types of model inversion attack, thus no experimental assessment is needed in this case. However, we

refrain from making a general claim, as there might still be potential attacks that can circumvent this

limitation and leave this as future research direction.

Property Inference. Due to the lack of a clear understanding of the underlying causes of property inference

leakage, it is challenging to predict how such attacks will scale in the grey-box setting. The general idea is

that the less gradients are exposed to the attacker, the less information is available for inference. However,

it remains unclear whether specific types of layers (e.g., convolutional or fully-connected) or their positions

in the model contribute to higher or lower information leakage.

To assess this category of attacks in the grey-box setting, we build upon the white-box property inference

attack proposed by Melis et al. [13] and adapt it to target only a subset of the gradients. This attack works

in batches, aiming to determine whether a batch of data points enjoys the target property or not. In our

variant of the attack, we feed to the attack model only the gradients computed with respect to parameters in

the exposed layers.

We conduct the assessment on two datasets: Labeled Faces in the Wild (LFW) and EMNIST letters. For

the LFW dataset we train a CNN model following the architecture provided in [13], with 3 convolutional

and 2 fully connected layers, using gender as main classification task, and race:black as inference task,

which has been reported to yield the highest attack rate. While for the EMNIST letter dataset, we train a

custom MLP model with 3 layers, using the standard 26 letters classification as the main task, and the letter

case (upper or lower) as the inference task. The gradients of the exposed layers are fed to a Random Forest

classifier with 50 trees, and the attack accuracy is averaged over multiple instances of the attack model. For

both datasets, we use batches of size 32, which are balanced with respect to the inference property, resulting

in an attack accuracy baseline of 50%.

For the CNN model trained on LFW, we did not find any specific patterns indicating whether some layers

are more or less susceptible to inference than others. The attack exhibited significant variability when

D3.2: Privacy-Preserving Design of ML Page 32 of 42

conducting multiple iterations of training the target model and conducting repeated testing. In Table 4, we

report the attack accuracy layer-wise for multiple attempts of the experiment, revealing no consistent

vulnerability or resistance of any layer across the runs. On the other hand, for the MLP model trained on

the EMNIST letters dataset, the attack did not achieve accuracy significantly above the baseline, regardless

of the choice of the layers to attack (including combinations of multiple layers).

Table 4: Property inference attack by Melis et al. (2019) against 5-layer CNN trained on the LFW dataset. The

attack accuracy is reported per layer, demonstrating high variability across multiple training attempts of the

same target model

Mitigation for the Exposed Layers. While encryption can prevent attackers from directly targeting the

most vulnerable layers of a model, there remains a risk of information leakage from exposed layers, as

shown above. Mitigating this potential leakage is out of the scope of this work, but we propose a few ideas

as follows. Incorporating differential privacy into the exposed layers of the model would provide a

theoretical-level privacy guarantee, at the cost of introducing an accuracy element in the trade-off. We

describe a possible implementation of DP to our solution in Section 6.3, where we show how to adapt the

approach by Shokri and Shmatikov [14] to partially encrypted models. Additionally, allowing for larger

encryption error on the secret layers by reducing the precision of the FHE scheme. This error would

propagate to the exposed layers during backpropagation, inducing a DP-like effect. Finally, secure

aggregation [28] could be used to conceal the individual model updates corresponding to the exposed layers

in case of a corrupted central server.

6.2.5 Trade-Off between Privacy and Efficiency

The more layers we encrypt, the higher the privacy, as less parameters are available to a potential adversary.

However, encrypting more layers also leads to lower performance due to the overhead introduced by

homomorphic evaluations and distributed bootstrapping. Thus, there is a trade-off between privacy and

efficiency when deciding how many and which layers to encrypt in a model. The optimal choice depends

on the specific use case, and in particular on the types of attacks one wants to protect the model from, and

the desired balance between privacy and performance. In Figure 4, we represent this trade-off, using

membership inference accuracy as the metric for privacy leakage.

Figure 4: Trade-off between privacy and efficiency for the MNIST dense neural network, where the privacy is

measured by the membership inference attack by Nasr et al. (2019) on gradients, assuming attacker corrupted

2 out of 3 parties

D3.2: Privacy-Preserving Design of ML Page 33 of 42

Each point on the plot represents a particular configuration of our approach, for different choices of ℒ𝑆. The

optimum point of the trade-off occurs when both the leakage and the training time are minimized (i.e., at

the origin point of the chart).

6.2.5.1 Comparison with Prior Work

The flexibility of our approach allows the user to sacrifice some privacy in order to gain training

performance in terms of computation and communication time compared to fully encrypted solution like

SPINDLE [33] or POSEIDON [20]. At the same time, it provides higher privacy levels than training

entirely in plaintext, without compromising significant accuracy. Note that setting 𝑇 = 0 corresponds to

the original POSEIDON idea resulting in a fully encrypted model.

For the very specific case presented in Figure 4, encrypting only the last layer (𝑇⁡ = ⁡2) provides a good

trade-off. It offers a membership leakage very close to a random guess (54.17%, a 5.6 times reduction from

the fully plaintext solution’s 73.21%, relative to the random guess baseline), while reducing the training

time with respect to the fully encrypted solution by a factor of 3.1. Assuming the adversary does not possess

the target label, the leakage reduction factor increases to 17.8. The advantage provided by our solution may

become even more evident for models with deeper architectures [52, 53, 54], particularly in settings with

constrained communication networks.

6.3 Integration with Differential Privacy

To mitigate the leakage from the exposed layers additional privacy-enhancing techniques can be employed,

such as differential privacy [1]. Applying DP to the parameters or gradients of exposed layers would provide

a theoretical privacy guarantee to our solution, albeit introducing an additional trade-off between privacy

and accuracy. By applying noise only on the exposed layers, rather than the entire model, our approach can

achieve a higher level of privacy for the same privacy budget compared to standard FL solutions with

differential privacy [14, 19, 55, 56].

We adapt the approach of Shokri and Shmatikov [14], which uses the sparse vector technique [57, 58] to

privately upload a small, perturbed subset of the gradients to the global model. Given a privacy budget 𝜖

per epoch allocated to each training party 𝑃𝑖, we split this budget among the exposed parameters, and use

Laplacian mechanism to add noise to the corresponding gradient value. The sensitivity of the training

mechanism is estimated by clipping the gradient values within the range [−𝛾, 𝛾], resulting in a sensitivity

of 2𝛾. The clipping range value should be independent of the specific training dataset, to avoid leaking

sensitive information. We suggest setting it by calculating the median of the unclipped gradients over the

course of training, as proposed in [18].

For each value 𝑔 in ∇𝑤𝑗 for 𝐿𝑗 ∈ ℒ𝐸, random Laplacian noise 𝑟𝑔 ∼ Lap(2𝑐𝛾 𝜖⁄) is generated, where 𝛾𝑔 is

the estimated clipping bound for 𝑔, and 𝑐 is the total number of exposed gradients 𝑐 =
∑ (|∇𝑤𝑗| + |∇𝑏𝑗|)𝐿𝑗∈ℒ𝐸 . The gradient 𝑔 is then clipped within [−𝛾𝑔, 𝛾𝑔], and the noise 𝑟𝑔 is added before

uploading to the central server. A similar process can be followed for the exposed bias gradients. These

operations are performed on the aggregated gradient obtained after several local iterations, each computed

over a randomly sampled batch. Applying noise to each computed gradients could be done as well, and the

overall effect over batches can be analysed using the privacy amplification theorem [59, 60]. More

advanced techniques, such as privacy accountants [19, 18], can also be potentially adapted to work in our

partially encrypted model solution.

6.4 Further Optimization: Delayed Encryption

In this section, we exploit the fact that some attacks start to be effective only after some number of training

epochs to further optimize our solution.

Attacking Intermediate Models: Membership Inference. A model acquires more information about its

training data the more training iterations it undergoes, thus leaking progressively more information as it

approaches the end of the training process. To assess how the membership leakage changes across the

D3.2: Privacy-Preserving Design of ML Page 34 of 42

epochs, we use the attack by Nasr et al. [2] against the intermediate models. Specifically, in Figure 5, we

present the attack accuracy against the model trained on the MNIST dataset. We carry out the attack at 10-

epoch intervals, targeting each layer within the model independently. Our experiment reveals a consistent

upward trend in attack accuracy with respect to the number of training epochs, especially for the later layers.

Notably, a significant deviation from the attack baseline appears only from epoch 90.

Figure 5: Layer-wise accuracy of the membership inference attack by Nasr et al. (2019) against intermediate

models for the MNIST classification task. The model leaks more membership information as the number of

training epochs grows. This behaviour is particularly evident for the output layer

Attacking Intermediate Models: Model Inversion. We also evaluated the effectiveness of model

inversion attacks against intermediate training models. Similarly to membership inference, our experiments

reveal that as the number of training epochs increases, the reconstructed class representative becomes more

and more visually similar to the corresponding training examples. In Figure 6, we display the reconstruction

of a face from the AT&T dataset performed during different training epochs. We use the model inversion

attack by Fredrikson et al. [9]. Following their work, we train an MLP with one hidden layer with 3000

nodes, sigmoid activation function, and a SoftMax output layer, using the SGD optimizer and cross-entropy

loss function. The reconstruction becomes more and more clear as the training proceeds. However, we

notice that the attack works already well even after just a few epochs. This happens since a model inversion

attack works well as soon as the model is generalising well enough.

D3.2: Privacy-Preserving Design of ML Page 35 of 42

Figure 6: Reconstruction of a face in the AT&T dataset performed at different training epochs. The first picture

is a class representative, while the number at the top-left of each picture denotes the corresponding training

epoch of the model

Attacking Intermediate Models: Property Inference. We also assessed how property inference varies

across training epochs. However, the experiments were inconclusive as no consistent trend emerged from

the attack accuracy. In Figure 7, we report the attack accuracy of the property inference attack by Melis et

al. [13] against intermediate training models for the LFW classification task. The attack is performed every

10 training epochs, and it targets each layer of the model individually to get better insights. The model

exhibits a general upward trend for information leakage as the number of training epochs grows. However,

this trend is not much consistent, and the leakage is already substantial since the very beginning.

Figure 7: Layer-wise accuracy of a property inference attack against intermediate models for the LFW

classification task

D3.2: Privacy-Preserving Design of ML Page 36 of 42

Optimization: Delayed Encryption. We can leverage the investigation of privacy attacks on intermediate

training models to further optimize our solution. An optimization for our solution consists of starting the

federated learning process fully in plaintext and encrypting (some of) the layers only once the model

becomes vulnerable. The number of layers to encrypt can be dynamically adjusted during the training

process. We will discuss this more in detail in Section 6.5.

6.5 Hyperparameters Choice

In this section we suggest a procedure to choose which layers to encrypt in a FL setting. Since the privacy

leakage of a model strongly depends on the training dataset, there is no general-purpose guideline on how

many and which layers to encrypt. A practical approach we propose consists of getting a lower bound

estimate on the privacy leakage through an assessment on the local training data. To do so, the parties can

train a dummy model on their own private datasets and perform a privacy assessment locally. Instead of

exploring all possible combinations of private-exposed layers, the parties can rely on the insights discussed

in Section 6.2.4 to determine which configurations are the most meaningful to assess. Since each local

dataset is a subset of the joint dataset, the privacy leakage assessed locally provides an empirical worst-

case for the privacy leakage of the joint model. From the efficiency point of view, the parties can use the

insights from Section 6.2.3, by also taking into account their specific computation and communication

constraints (e.g., bandwidth and network delay between the nodes). Finally, the parties can collectively

agree on which layers to encrypt by leveraging MPC techniques, avoiding leaking potential information

about their local dataset. Depending on the specific situation and requirements, the parties can perform a

majority vote or compute the union of the local choices to reach a consensus on the layers to be encrypted.

We provide an example of how to agree on ℒ𝑆 for the optimized version of our solution in case membership

inference attacks are considered. Each party 𝑃𝑖 trains a model locally and assess it against the considered

privacy attack across the training epochs, as in Figure 5. Then, they select a privacy threshold 𝜏𝑖 ∈ [0.5, 1],
which fixes an upper bound on the model leakage they are willing to allow. The party then proceeds to

compute their preferred choice for the layers to encrypt ℒ𝑆
𝑖,𝑔

 for each epoch 𝑔 = 1,… , 𝐸𝑔 as the minimum

set of layers that keeps the attack accuracy under 𝜏𝑖. For consistency reasons, if a layer 𝐿𝑗 is included in

ℒ𝑆
𝑖,𝑔

, then all subsequent layers 𝐿𝑘 for 𝑘 > 𝑗 should be included as well. Moreover, the layer should be

included in all the future epochs as well, that is 𝐿𝑗 ∈ ℒ𝑆
𝑖,𝑔′

 for all 𝑔′ > 𝑔. Then, the parties use MPC to

compute ℒ𝑆
𝑔

 as the union of the ℒ𝑆
𝑖,𝑔

 for each 𝑔 = 1,… , 𝐸𝑔.

D3.2: Privacy-Preserving Design of ML Page 37 of 42

7. Conclusions and Next Steps

In this deliverable, we presented a flexible solution for privacy-preserving training of neural networks in a

federated setting such as RE-SAMPLE. Our system allows users to trade-off little privacy for higher

training performance, by selectively encrypting specific portions of the model using a multiparty FHE

scheme. Through an investigation of various privacy attacks in the grey-box setting, where the adversary’s

access is limited to the unencrypted layers of the model, we determine the layers that tend to leak more

information and, consequently, identify which layers are advisable to encrypt. Our findings indicate that

encrypting the last layers is particularly effective to mitigate membership inference attacks, while

encrypting the first layers helps preventing model inversion attacks.

The next steps consist of:

1. implementing the prototype within the RE-SAMPLE framework in D4.5, where we will detail the

API calls and the interactions among the hospitals and the coordinating server, and

2. selecting the hyperparameters of the solution in D4.6 by assessing the solution on the actual RE-

SAMPLE data, to choose the model architecture, the subset of layers to encrypt, and the encryption

schedule for the delayed encryption.

Due to the high costs associated with FHE, a major challenge will be making sure that the runtime

performance of the implementation meets practical deployment thresholds. The hyperparameters selection

will play a key role in this, namely in finding a sweet spot in the efficiency-privacy trade-off that achieves

a requisite operational efficiency level while safeguarding patient privacy.

D3.2: Privacy-Preserving Design of ML Page 38 of 42

References

[1] C. Dwork, F. McSherry, K. Nissim and A. Smith, “Calibrating noise to sensitivity in private data

analysis,” in Theory of Cryptography, 2006.

[2] M. Nasr, R. Shokri and A. Houmansadr, “Comprehensive privacy analysis of deep learning: Passive

and active white-box inference attacks against centralized and federated learning,” in Symposium on

security and privacy (SP), 2019.

[3] M. Rigaki and S. Garcia, “A survey of privacy attacks in machine learning,” arXiv preprint

arXiv:2007.07646, 2020.

[4] R. Shokri, M. Stronati, C. Song and V. Shmatikov, “Membership inference attacks against machine

learning models,” in Symposium on security and privacy (SP), 2017.

[5] S. Yeom, I. Giacomelli, M. Fredrikson and S. Jha, “Privacy risk in machine learning: Analyzing the

connection to overfitting,” in Computer security foundations symposium (CSF), 2018.

[6] B. Hilprecht, M. Härterich and D. Bernau, “Monte Carlo and Reconstruction Membership Inference

Attacks against Generative Models,” in Proceedings on Privacy Enhancing Technologies, 2019.

[7] L. Zhu, Z. Liu and S. Han, “Deep leakage from gradients,” Advances in neural information processing

systems, vol. 32, 2019.

[8] Z. Wang, M. Song, Z. Zhang, Y. Song, Q. Wang and H. Qi, “Beyond inferring class representatives:

User-level privacy leakage from federated learning,” in IEEE INFOCOM 2019-IEEE conference on

computer communications, 2019.

[9] M. Fredrikson, S. Jha and T. Ristenpart, “Model inversion attacks that exploit confidence information

and basic countermeasures,” in Proceedings of the 22nd ACM SIGSAC conference on computer and

communications security, 2015.

[10] B. Hitaj, G. Ateniese and F. Perez-Cruz, “Deep models under the GAN: information leakage from

collaborative deep learning,” in Proceedings of the 2017 ACM SIGSAC conference on computer and

communications security, 2017.

[11] Y. Zhang, R. Jia, H. Pei, W. Wang, B. Li and D. Song, “The secret revealer: Generative model-

inversion attacks against deep neural networks,” in Proceedings of the IEEE/CVF conference on

computer vision and pattern recognition, 2020.

[12] K. Ganju, Q. Wang, W. Yang, C. A. Gunter and N. Borisov, “Property inference attacks on fully

connected neural networks using permutation invariant representations,” in Proceedings of the 2018

ACM SIGSAC conference on computer and communications security, 2018.

[13] L. Melis, C. Song, E. De Cristofaro and V. Shmatikov, “Exploiting unintended feature leakage in

collaborative learning,” in Symposium on security and privacy (SP), 2019.

[14] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proceedings of the SIGSAC

conference on computer and communications security, 2015.

[15] X. Zhu, C. Vondrick, D. Ramanan and C. C. Fowlkes, “Do We Need More Training Data or Better

Models for Object Detection?.,” in BMVC, 2012.

[16] B. McMahan, E. Moore, D. Ramage, S. Hampson and B. A. y Arcas, “Communication-efficient

learning of deep networks from decentralized data,” in Artificial intelligence and statistics, 2017.

[17] M. G. Poirot, P. Vepakomma, K. Chang, J. Kalpathy-Cramer, R. Gupta and R. Raskar, “Split learning

for collaborative deep learning in healthcare,” arXiv preprint arXiv:1912.12115, 2019.

[18] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar and L. Zhang, “Deep

learning with differential privacy,” in Proceedings of the SIGSAC conference on computer and

communications security, 2016.

[19] H. B. McMahan, D. Ramage, K. Talwar and L. Zhang, “Learning differentially private recurrent

language models,” arXiv preprint arXiv:1710.06963, 2017.

[20] S. Sav, A. Pyrgelis, J. R. Troncoso-Pastoriza, D. Froelicher, J.-P. Bossuat, J. S. Sousa and J.-P.

Hubaux, “Poseidon: Privacy-preserving federated neural network learning,” in Network And

Distributed System Security Symposium, 2021.

D3.2: Privacy-Preserving Design of ML Page 39 of 42

[21] S. Wagh, S. Tople, F. Benhamouda, E. Kushilevitz, P. Mittal and T. Rabin, “Falcon: Honest-majority

maliciously secure framework for private deep learning,” arXiv preprint arXiv:2004.02229, 2020.

[22] P. Mohassel and P. Rindal, “ABY3: A mixed protocol framework for machine learning,” in

Proceedings of the SIGSAC conference on computer and communications security, 2018.

[23] S. Wagh, D. Gupta and N. Chandran, “SecureNN: 3-Party Secure Computation for Neural Network

Training.,” Proceedings on Privacy Enhancing Technologies, 2019.

[24] F. Mireshghallah, M. Taram, P. Vepakomma, A. Singh, R. Raskar and H. Esmaeilzadeh, “Privacy in

deep learning: A survey,” arXiv preprint arXiv:2004.12254, 2020.

[25] M. Burkhart, M. Strasser, D. Many and X. Dimitropoulos, “SEPIA: Privacy-Preserving Aggregation

of Multi-Domain Network Events and Statistics,” in USENIX Security Symposium, 2010.

[26] E. Shi, H. T. H. Chan, E. Rieffel, R. Chow and D. Song, “Privacy-preserving aggregation of time-

series data,” in Annual Network & Distributed System Security Symposium (NDSS), 2011.

[27] T. H. H. Chan, E. Shi and D. Song, “Privacy-preserving stream aggregation with fault tolerance,” in

Financial Cryptography and Data Security: 16th International Conference, FC 2012, Kralendijk,

Bonaire, Februray 27-March 2, 2012, Revised Selected Papers 16, 2012.

[28] K. Bonawitz, V. Ivanov, B. Kreuter, A. Marcedone, H. B. McMahan, S. Patel, D. Ramage, A. Segal

and K. Seth, “Practical secure aggregation for privacy-preserving machine learning,” in proceedings

of the 2017 ACM SIGSAC Conference on Computer and Communications Security, 2017.

[29] J. H. Bell, K. A. Bonawitz, A. Gascón, T. Lepoint and M. Raykova, “Secure single-server aggregation

with (poly) logarithmic overhead,” in Proceedings of the SIGSAC Conference on Computer and

Communications Security, 2020.

[30] P. Mohassel and Y. Zhang, “Secureml: A system for scalable privacy-preserving machine learning,”

in Symposium on security and privacy (SP), 2017.

[31] M. Byali, H. Chaudhari, A. Patra and A. Suresh, “FLASH: Fast and robust framework for privacy-

preserving machine learning,” Cryptology ePrint Archive, 2019.

[32] H. Chaudhari, R. Rachuri and A. Suresh, “Trident: Efficient 4pc framework for privacy preserving

machine learning,” arXiv preprint arXiv:1912.02631, 2019.

[33] D. Froelicher, J. R. Troncoso-Pastoriza, A. Pyrgelis, S. Sav, J. S. Sousa, J.-P. Bossuat and J.-P.

Hubaux, “Scalable Privacy-Preserving Distributed Learning,” Proceedings on Privacy Enhancing

Technologies, 2021.

[34] J. H. Cheon, A. Kim, M. Kim and Y. Song, “Homomorphic encryption for arithmetic of approximate

numbers,” in Advances in Cryptology–ASIACRYPT: International Conference on the Theory and

Applications of Cryptology and Information Security, 2017.

[35] C. Mouchet, J. Troncoso-Pastoriza, J.-P. Bossuat and J.-P. Hubaux, “Multiparty homomorphic

encryption from ring-learning-with-errors,” Proceedings on Privacy Enhancing Technologies, 2021.

[36] A. Kim, A. Papadimitriou and Y. Polyakov, “Approximate homomorphic encryption with reduced

approximation error,” in Cryptographers’ Track at the RSA Conference, 2022.

[37] A. Kim, Y. Song, M. Kim, K. Lee and J. H. Cheon, “Logistic regression model training based on the

approximate homomorphic encryption,” BMC medical genomics, vol. 11, p. 23–31, 2018.

[38] K. Han, S. Hong, J. H. Cheon and D. Park, Efficient Logistic Regression on Large Encrypted Data,

2018.

[39] M. Blatt, A. Gusev, Y. Polyakov, K. Rohloff and V. Vaikuntanathan, “Optimized homomorphic

encryption solution for secure genome-wide association studies,” BMC Med Genomics, vol. 13, p.

83, July 2020.

[40] Y. G. Desmedt, “Threshold cryptography,” European Transactions on Telecommunications, vol. 5,

p. 449–458, 1994.

[41] A. López-Alt, E. Tromer and V. Vaikuntanathan, “On-the-fly multiparty computation on the cloud

via multikey fully homomorphic encryption,” in Proceedings of the forty-fourth annual ACM

symposium on Theory of computing, 2012.

D3.2: Privacy-Preserving Design of ML Page 40 of 42

[42] H. Chen, W. Dai, M. Kim and Y. Song, “Efficient Multi-Key Homomorphic Encryption with Packed

Ciphertexts with Application to Oblivious Neural Network Inference,” in Proceedings of the 2019

ACM SIGSAC Conference on Computer and Communications Security, New York, NY, USA, 2019.

[43] G. Asharov, A. Jain, A. López-Alt, E. Tromer, V. Vaikuntanathan and D. Wichs, “Multiparty

computation with low communication, computation and interaction via threshold FHE,” in Advances

in Cryptology–EUROCRYPT: 3Annual International Conference on the Theory and Applications of

Cryptographic Techniques, 2012.

[44] J. Duchi, E. Hazan and Y. Singer, “Adaptive subgradient methods for online learning and stochastic

optimization.,” Journal of machine learning research, vol. 12, 2011.

[45] T. Tieleman, G. Hinton and others, “Lecture 6.5-rmsprop: Divide the gradient by a running average

of its recent magnitude,” COURSERA: Neural networks for machine learning, vol. 4, p. 26–31, 2012.

[46] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” arXiv preprint

arXiv:1412.6980, 2014.

[47] A. Al Badawi, J. Bates, F. Bergamaschi, D. B. Cousins, S. Erabelli, N. Genise, S. Halevi, H. Hunt,

A. Kim, Y. Lee, Z. Liu, D. Micciancio, I. Quah, Y. Polyakov, R. V. Saraswathy, K. Rohloff, J. Saylor,

D. Suponitsky, M. Triplett, V. Vaikuntanathan and V. Zucca, “OpenFHE: Open-Source Fully

Homomorphic Encryption Library,” in Proceedings of the 10th Workshop on Encrypted Computing

& Applied Homomorphic Cryptography, New York, NY, USA, 2022.

[48] G. Cohen, S. Afshar, J. Tapson and A. Van Schaik, “EMNIST: Extending MNIST to handwritten

letters,” in 2017 international joint conference on neural networks (IJCNN), 2017.

[49] G. B. Huang, M. Mattar, T. Berg and E. Learned-Miller, “Labeled faces in the wild: A database

forstudying face recognition in unconstrained environments,” in Workshop on faces in'Real-

Life'Images: detection, alignment, and recognition, 2008.

[50] E. Aharoni, A. Adir, M. Baruch, N. Drucker, G. Ezov, A. Farkash, L. Greenberg, R. Masalha, G.

Moshkowich, D. Murik and others, “HeLayers: A Tile Tensors Framework for Large Neural

Networks on Encrypted Data,” Proceedings on Privacy Enhancing Technologies, vol. 1, p. 325–342,

2023.

[51] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional networks,” in Computer

Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,

Proceedings, Part I 13, 2014.

[52] A. Krizhevsky, I. Sutskever and G. E. Hinton, “Imagenet classification with deep convolutional

neural networks,” Advances in neural information processing systems, vol. 25, 2012.

[53] A. F. Agarap, “Training Deep Neural Networks for Image Classification in a Homogenous

Distributed System,” 2019.

[54] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai, T. Unterthiner, M. Dehghani, M.

Minderer, G. Heigold, S. Gelly and others, “An image is worth 16x16 words: Transformers for image

recognition at scale,” arXiv preprint arXiv:2010.11929, 2020.

[55] W. Li, F. Milletarı̀, D. Xu, N. Rieke, J. Hancox, W. Zhu, M. Baust, Y. Cheng, S. Ourselin, M. J.

Cardoso and others, “Privacy-preserving federated brain tumour segmentation,” in Machine Learning

in Medical Imaging: 10th International Workshop, MLMI 2019, Held in Conjunction with MICCAI

2019, Shenzhen, China, October 13, 2019, Proceedings 10, 2019.

[56] S. Truex, L. Liu, K.-H. Chow, M. E. Gursoy and W. Wei, “LDP-Fed: Federated learning with local

differential privacy,” in Proceedings of the Third ACM International Workshop on Edge Systems,

Analytics and Networking, 2020.

[57] C. Dwork, A. Roth and others, “The algorithmic foundations of differential privacy,” Foundations

and Trends® in Theoretical Computer Science, vol. 9, p. 211–407, 2014.

[58] M. Hardt and G. N. Rothblum, “A multiplicative weights mechanism for privacy-preserving data

analysis,” in 2010 IEEE 51st annual symposium on foundations of computer science, 2010.

[59] S. P. Kasiviswanathan, H. K. Lee, K. Nissim, S. Raskhodnikova and A. Smith, “What can we learn

privately?,” SIAM Journal on Computing, vol. 40, p. 793–826, 2011.

D3.2: Privacy-Preserving Design of ML Page 41 of 42

[60] A. Beimel, H. Brenner, S. P. Kasiviswanathan and K. Nissim, “Bounds on the sample complexity for

private learning and private data release,” Machine learning, vol. 94, p. 401–437, 2014.

[61] F. Tramer and D. Boneh, “Slalom: Fast, verifiable and private execution of neural networks in trusted

hardware,” arXiv preprint arXiv:1806.03287, 2018.

[62] S. Song, K. Chaudhuri and A. D. Sarwate, “Stochastic gradient descent with differentially private

updates,” in 2013 IEEE global conference on signal and information processing, 2013.

[63] V. Shejwalkar and A. Houmansadr, “Membership privacy for machine learning models through

knowledge transfer,” in Proceedings of the AAAI conference on artificial intelligence, 2021.

[64] M. S. Riazi, C. Weinert, O. Tkachenko, E. M. Songhori, T. Schneider and F. Koushanfar,

“Chameleon: A hybrid secure computation framework for machine learning applications,” in

Proceedings of the 2018 on Asia conference on computer and communications security, 2018.

[65] V. Pihur, A. Korolova, F. Liu, S. Sankuratripati, M. Yung, D. Huang and R. Zeng, “Differentially-

private ``draw and discard'' machine learning,” arXiv preprint arXiv:1807.04369, 2018.

[66] D. Pasquini, G. Ateniese and M. Bernaschi, “Unleashing the Tiger: Inference Attacks on Split

Learning,” in Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications

Security, New York, NY, USA, 2021.

[67] N. Papernot, M. Abadi, U. Erlingsson, I. Goodfellow and K. Talwar, “Semi-supervised knowledge

transfer for deep learning from private training data,” arXiv preprint arXiv:1610.05755, 2016.

[68] J. Liu, M. Juuti, Y. Lu and N. Asokan, “Oblivious neural network predictions via minionn

transformations,” in Proceedings of the 2017 ACM SIGSAC conference on computer and

communications security, 2017.

[69] Z. Li and Y. Zhang, “Membership leakage in label-only exposures,” in Proceedings of the 2021 ACM

SIGSAC Conference on Computer and Communications Security, 2021.

[70] B. Li, D. Micciancio, M. Schultz and J. Sorrell, “Securing Approximate Homomorphic Encryption

Using Differential Privacy,” in Advances in Cryptology – CRYPTO 2022, Cham, 2022.

[71] N. Kumar, M. Rathee, N. Chandran, D. Gupta, A. Rastogi and R. Sharma, “Cryptflow: Secure

tensorflow inference,” in 2020 IEEE Symposium on Security and Privacy (SP), 2020.

[72] K. Kluczniak and G. Santato, On Circuit Private, Multikey and Threshold Approximate

Homomorphic Encryption, 2023.

[73] C. Juvekar, V. Vaikuntanathan and A. Chandrakasan, “{GAZELLE}: A low latency framework for

secure neural network inference,” in USENIX Security Symposium, 2018.

[74] M. Juuti, S. Szyller, S. Marchal and N. Asokan, “PRADA: protecting against DNN model stealing

attacks,” in 2019 IEEE European Symposium on Security and Privacy (EuroS&P), 2019.

[75] J. Jia, A. Salem, M. Backes, Y. Zhang and N. Z. Gong, “Memguard: Defending against black-box

membership inference attacks via adversarial examples,” in Proceedings of the 2019 ACM SIGSAC

conference on computer and communications security, 2019.

[76] M. Hardt, B. Recht and Y. Singer, “Train Faster, Generalize Better: Stability of Stochastic Gradient

Descent,” in Proceedings of the 33rd International Conference on International Conference on

Machine Learning - Volume 48, New York, NY, USA, 2016.

[77] R. Gilad-Bachrach, N. Dowlin, K. Laine, K. Lauter, M. Naehrig and J. Wernsing, “Cryptonets:

Applying neural networks to encrypted data with high throughput and accuracy,” in International

conference on machine learning, 2016.

[78] J. Fan and F. Vercauteren, “Somewhat Practical Fully Homomorphic Encryption.,” IACR Cryptol.

ePrint Arch., vol. 2012, p. 144, 2012.

[79] C. A. Choquette-Choo, F. Tramer, N. Carlini and N. Papernot, “Label-only membership inference

attacks,” in International conference on machine learning, 2021.

[80] H. Chen, I. Chillotti and Y. Song, “Improved Bootstrapping for Approximate Homomorphic

Encryption,” in Advances in Cryptology – EUROCRYPT 2019, Cham, 2019.

[81] Z. Brakerski, “Fully homomorphic encryption without modulus switching from classical GapSVP,”

in Annual Cryptology Conference, 2012.

D3.2: Privacy-Preserving Design of ML Page 42 of 42

[82] Z. Brakerski, C. Gentry and V. Vaikuntanathan, “(Leveled) Fully Homomorphic Encryption without

Bootstrapping,” ACM Trans. Comput. Theory, vol. 6, July 2014.

